MDI current status

2009/7/7 M. Iwasaki (Tokyo) For Belle-II MDI Group Tokyo / Tohoku / KEK

http://hep.phys.s.u-tokyo.ac.jp/superKEKBMDI/

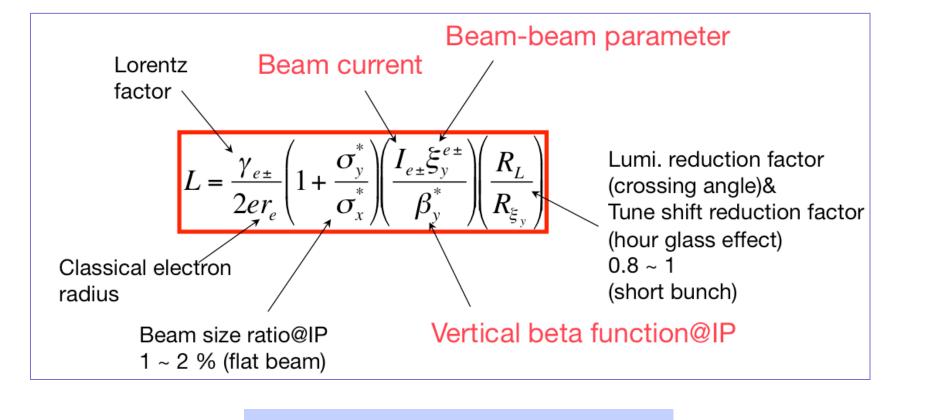
Introduction

To assure the stable detector operation IR design is very important

Issues of the IR design:

1. Beam background

High beam current / High B-field at final Q-magnets

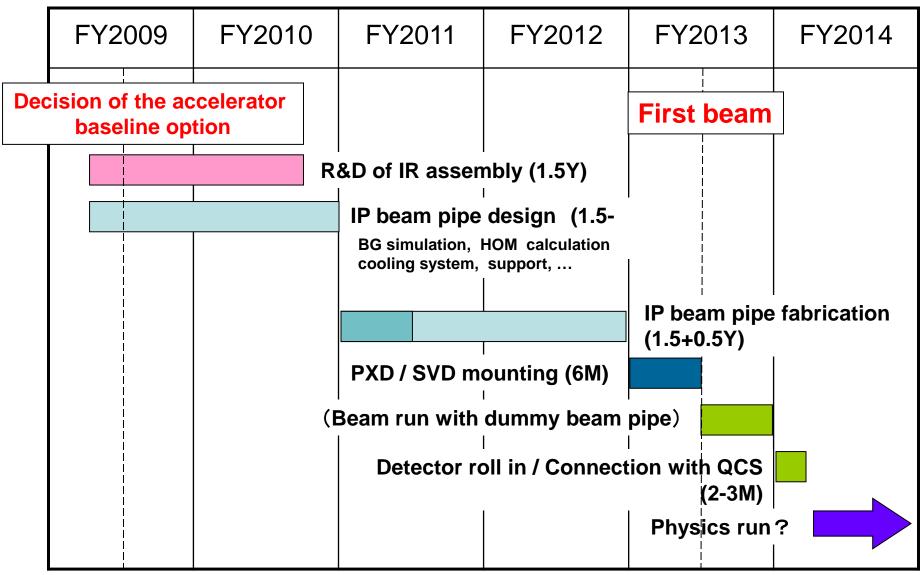

2. Heating of IR components

Short bunch length / High current / High power SR

3. Assembly / support of IR components

Little space / Small beam size (vibration around IP)

From KEKB to Super-KEKB Strategies for Increasing Luminosity


High-Current Option (1) Smaller β_{y}^{*} (2) Increase beam currents (3) Increase ξ_{y} Nano-Beam Option

First priorities

High-current option... SR BG & HOM heatingNano-beam option... IR assembly & support

	High current (LER/HER)	Nano-beam(LER/HER)			
Beam current I (A)	High current : 9.4/4.1	~3/~2			
Bunch length σ_z (mm)	Short bunch length : 5/3	6/6			
Emittance ϵ_x (nm)	24/18	Low emittance : 1/1			
β _y (nm)	3/6	Small β : 0.22/0.22			
Beam size σ_y	0.85/0.73 (μm)	Small beam size : 34/44 (nm)			
Final Q-magnet layout	 Common QCS for 2 beams location <u>40cm (L)</u> / 65cm (R) Little space in L side 	Two separate Q-magnets for each 2 beams Little space in both L/R sides			
HER beam HER beam HER beam HER beam 4					

Schedule

For the Nano-beam option,

R&D of the IR assembly / support design is important

<u>Need to fix the IP beam pipe baseline design in <2years</u>

Beam pipe geometry (size, direction, material, SR mask)

SR BG simulation / HOM calculation

Cooling system Thermal calculation, cooling test Support and integration with QCS / PXD/ SVD

Strategy

- 1. Start the IR assembly R&D and Beam pipe design (SR, HOM..)
- 2. The other particle BG simulation Touschek, beam-gas, radiative BhaBha
- 3. IR support design

Vibration measurement, structure calculation

Current status

			High-current	Nano-beam
BG simulation	SR Radiative BhaBha Touschek Beam-gas	Toky o Toky o Tohoku (KEK? Tokyo?)	done 	On going On going
HOM calculation		Tohoku	On going	
Thermal calculation		KEK	done	
Cooling system design		?		
Beam pipe mechanical design		KEK + Tokyo?		
IR assembly		KEK	On going	
Vibration measurement		KEK + Tokyo?	On going	