Compilation of information about BSO option

Kenkichi Miyabayashi
2009 July 7th
Belle-II calorimeter group meeting

Characteristics of BSO scintillator

- Heavier; more compact shower.
$-\rho=6.8 \mathrm{~g} / \mathrm{cm}^{3}, X_{0}=1.15 \mathrm{~cm}, R_{M}=2.4(?) \mathrm{cm}$
- Ref., Csl, $\rho=4.5 \mathrm{~g} / \mathrm{cm}^{3}, X_{0}=1.85 \mathrm{~cm}, R_{M}=3.5 \mathrm{~cm}$
- Wavelength($\lambda \sim 480 \mathrm{~nm})$ match well all the photocathode and solid-state sensors.
- PureCsl, $\lambda \sim 330 \mathrm{~nm}$.

BSO crystal production technology

- Crystal mass production technology basically established by FutekFurnace co.(FFK).
- Oxide co., getting technology transfer from FFK, already has VB furnaces corresponding to $1 / 8$ ~ $1 / 4$ of mass production (by ordering needed pots).
- Target price is ~ 0.35 Myen/piece
- ~3000 or 4000 pieces result in similar (or x1.3 at most) total price of pure Csl.

Oxide co.'s facility

- On April 28th, I visited Oxide company in Yamanashi prefecture.
(http://www.opt-oxide.com/)
- They already have 9 VB furnaces capable to produce $65 \mathrm{~mm} \phi$ BSO ingot.

$2 \times 2 \times 20 \mathrm{~cm}^{3}$ sample crystals

- Supplemental budget allocated for 4 pieces, 3M yen.
- Oxide co. started test production.
- Delivery; mid. Oct.,
- Preliminary tests to be reported at Nov. Belle-II meeting.
- One borrowed 2.2X2.2X18cm ${ }^{3}$ reference crystal (from Prof. H.Shimizu, Tohoku) is now in Nara, to be tested in detail soon.

BSO:Pro and needed checks

- Smaller moriele radius;
- Better recon. for high momentum π^{0}
- Need check with (even simple) GEANT simulation.
- Similar L.O. to pure CsI, $\lambda \sim 480 \mathrm{~nm}$
- Looks to hold by Tomoko's study with PMT.
- Test with APD planned next month.

Further comments

- Radiation hardness.
- Impact to mechanical support structure;
- shorter crystal length(more space behind crystals)
- stress concentration because of higher density?
- Crystal geometry for final cutting and polishing.
- Being different from PureCsl with CZ furnace, ingot can be cut and polished afterward.
- Smaller cross section($\sim 4 \times 4 \mathrm{~cm}^{2}$) compensate a little longer decay time($\sim 100 \mathrm{~ns}$) in terms of pile up suppression.

Cost estimation

Item	Cost/unit	number	OkuYen
Crystal	0.35 MYen	~ 3500	${ }^{*} 12$
APD	56 kYen	~ 3500	${ }^{*} 2$
Preamp	$\sim 10 \mathrm{kYen}$	~ 3500	${ }^{*} 0.35$
Elec.			${ }^{* *} 1.35$
Mech. Str.			${ }^{* *} 0.5$
Test bench			${ }^{* *} 0.1$
Assemble			${ }^{* *} 0.3$
Total			16.6

* depends on crystal final geometry, ** taken or scaled from Alex estimation for PureCsI+PP option.

