Status of SuperKEKB Design: Lattice and IR

Y. Ohnishi

July 7, 2009 3rd Open Meeting of the Belle collaboration KEK "Tanabata": Festival of the Weaver ?

1

L=8x10³⁵!

Contents

Nano-beam scheme: Design concept

Machine parameters

Lattice and IR

Design concept Luminosity is determined by 3 parameters in principle.

Collision scheme

High current scheme

Nano beam scheme

Total projected cross section is equal for each other. 4

Strategy of Nano beam

Smaller σ_v^* provides higher luminosity.

Smaller β_y^* provides smaller σ_y^* , however longer σ_z is OK. (less HOM, no CSR)

Hourglass (H.G) condition requires smaller σ_x^* , namely smaller β_x^* is necessary.

Smaller beam-beam parameter is preferable, so ϵ_y should be smaller in proportional to β_y^*

Small β_x^* , β_y^* and small emittance is required.

Requirement: $8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ "Nano beam scheme" LER/HER $\epsilon_x = 2.8 \text{ nm} / 2.0 \text{ nm}$ β_x *= 17.8 mm / 25 mm

 $\beta_v^* = 0.26 / 0.26 \text{ mm}$

ξ_y = 0.079 ~ KEKB

Machine parameters

Tentative parameters:

		LER	HER	
Emittance	ε _x	2.8	2.0	nm
Coupling	$\epsilon_{\rm y}/\epsilon_{\rm x}$	0.74	1.80	%
Horizontal beta at IP	β_x^*	17.8	25.0	mm
Vertical beta at IP	β_y^*	0.26	0.26	mm
Horizontal beam size	σ_x^*	7.06	7.07	μm
Vertical beam size	σ_y^*	0.073	0.097	μm
Bunch length	σ_{z}	5		mm
Half crossing angle	φ	30		mrad
Beam Energy	E	3.5	8.0	
Beam Current	I	3.84	2.21	A
Number of bunches	n _b	2252		
Beam-beam parameter	ξγ	0.079	0.079	
Luminosity	L	8x10 ³⁵ (8.5x10 ³⁵ with CW)		cm ⁻² s ⁻¹

* Luminosity is obtained from beam-beam simulations.

Lattice design

item 1

Low emittance HER LER Increase Longer number bends of arc cells

item 2

Low beta at IP Separated final quads Closer to IP

item 3 Dynamic aperture for injection, Touschek lifetime

Local chromaticity correction No/small emittance generation

Summary of items

	LER	HER		
Low emittance	 Longer bends 0.89 m to 4 m long 	 Increase number of arc cells Smaller dispersion in bends 28 cells to 44 cells 		
Low beta at IP	 Separated final quads. Closer to IP Superconducting or permanent magnets 			
Local chromaticity correction (LCC) (to get large DA)	 KEKB-LER type Chicane-like (reverse bends) Geometrical flexibility Emittance is generated. 	 ILC/SuperB type (modified to SuperKEKB) Bending angle is necessary (no reverse bends). Emittance can be ignored. 		

One of constraints is tunnel geometry.

TSUKUBA IR

In case of HER, large incident angle(50 mrad) makes large bending angle at LCC.

Consequently, large dispersion at LCC for HER.

Then, chromaticity correction can be done with keeping dynamic aperture. On the other hand, LER can use KEKB-LER type for LCC since wiggler sections can control emittance.

Chicane type LCC is almost straight beam line from a global point of view although large dispersion can be made at LCC.

Beam axis and Solenoid axis

LER IR optics

19

HER IR optics

HER arc to IR optics

LER whole ring

C = 3016.243 m (same as KEKB-LER)

HER whole ring

C = 3016.262 m (same as KEKB-HER)

IR magnets (Preliminary)

Dynamic aperture

HER dynamic Aperture (stored)

HER dynamic aperture (injection)

LER dynamic aperture (injection & stored) **Injection** Aperture: 0% coupling without RAD 1000turn 1% coupling without RAD 1000turn (betatron injection) 4% coupling without RAD 1000turn 0% coupling with RAD 6000turn $2J_{x} = 5x10^{-7} m$ 1% coupling with RAD 6000turn 4% coupling with RAD 6000turn 2J_v=2x10⁻⁸ m 2J_z=0.25% **Touschek lifetime х_{тах} (**б) ~400 sec $n_p = 10.7 \times 10^{10}$ k = 0.74 % 20 **Injection Aperture:** (synchrotron injection) $2J_x = 1.2x10^{-8} m$ (4x10⁻⁹ m in injector) 2J₇=0.5%+0.25% -0.015-0.0050.005-0.01Ο. 0.01 0.015 $\Delta p/p_0$ $\varepsilon_{\rm x} \sim 1.8$ nm(without INTRA) Acceptance 1.1 μ m @ on-momentum 4% coupling

28

Synchrotron injection

^{*}This scheme is applied in LEP.

1) Energy of injected beam is shifted by δ_0 , then an injection orbit is adjusted to be a closed orbit of the ring. $(X_0, X_0') = (\eta, \eta')\delta_0$

2) The coherent betatron oscillation due to the injection error should be zero since the betatron oscillation is transformed to the synchrotron oscillation.

X0 = 2.5 σ_{inj} + 3 σ_{ring} + w = 6~6.5 mm η = 1.28 m (LER) / 1.2 m (HER) for δ_0 = 0.5 % To make this possible, the injection point will be moved from the FUJI straight section to the arc section.

-> Remodel the BT lines

Good quality of injected beam is quite necessary.

e- low emittance RF gun and e+ DR

IR magnet configuration: Permanent magnet + S.C. corrector (alternative)

Final focus quadrupoles(QC1) can be closer to IP than S.C. magnets only.

This makes larger dynamic aperture.

QC1P/E(Permanent Magnet)

Summary

The lattice of "Nano beam scheme" is still being developed.

Dynamic aperture is not enough so far for injection/Touschek lifetime. It strongly depends on IR magnet configuration.

We are considering both permanent and superconducting magnets.

Appendix

HER arc cell

2.5 π non-interleaved sextupole chromaticity correction

HER arc cell #magnets increases by 60%

LER IR optics

