Event builder design

Yamagata T.Higuchi

Contents

- Current scheme "EB unit"
- Belle II requirement
- Barrel shifter method
- Usage of network switch

Throughput

- Current
 - $\sim 30 \text{kB x } 500 \text{Hz} \sim 1 \text{kHz} => 15 \text{MB/s} \sim 30 \text{MB/s}$
 - 1 or 2 units of EFARM operation

Throughput

- Current
 - $\sim 30 \text{kB x } 500 \text{Hz} \sim 1 \text{kHz} = > 15 \text{MB/s} \sim 30 \text{MB/s}$
 - 1 or 2 units of EFARM
- ∼ Belle II
 - $\sim 100 \text{kB x } 30 \text{kHz} => 3000 \text{MB/s}$
 - → 50 units of EFARM

of PC

- # of PC / EFARM unit is 50
- To catch up Belle II data rate,
 - 50 unit of EFARM
 - **~** 500 PCs
 - ~ really?

reduce # of PCs

- Now CPU power limits EFARM throughput
- Even if I/O speed is not advanced,
 processing power will be faster in future.
- ➤ We can assume 1Gbps (100MB/s) per EFARM unit.

of EFARM

- Total output is 3000MB/s, so 30 units of EFARM will be sufficient
- ∼ # of PCs is still 300.
- ~ really?

Bottoleneck

- Current bottleneck is E3
 - ∼ E1 and E2 are not saturated.

How about this?

Single unit has two final layer (E3)

of PCs

- → 1 unit of EFARM achieves 200MB/s
- → # of EFARM is 15
- # of CPU is still 165

One more E3

of PCs

- One EFARM unit achieves 300MB/s
- # of units is 10
- → # of PCs is 130
- Still large.
 - This # contains no spare

of in / # of out

If the CPU processing power doesn't limit the throughput, the bottle neck is where # of input > # of output

∼ If # of output is always same of input, I/O bandwidth will be limited CPU power.

How to reduce # of PC?

- If the # of PC is most heavy problem, Barrel shifter scheme can be adopted again.
- ∼ Use 1 PC as 4x4 Barrel Shifter of GbE

GLINK Barrel Shifter E.B. (~2001)

16x16 by 8PCs, 2layer

16 output outs only 160MB/s, so insufficient

64x64 by 48PC by 3layer

Weakness

- There is no redundancy
 - In current Belle scheme, EFARM2 can run w/o any problem even if one PC in EFARM1 corrupts.

noDAQ guys say,

- Why don't you use network switch?
 Recent switch has sufficient speed.
- If you use, E.B. topology will be simple and you will get both of redundancy and flexibility.

of PC is only 32, also hot-standby PC can be adopted.

Problem: Traffic jam

All event fragments rush into same output port at the same time.

Back Pressure

To avoid collision, Ethernet has 802.3x flow control specification.

Back Pressure

Receiving data from network

When Hardware buffer is occupied by unread data, interface "PAUSE frame" will be sent

Switch

Buffer overflow

- Most shortest buffer is hardware.
- So kernel must read data from hardware to kernel buffer very very frequently.
- Also user process must read very quickly the kernel buffer.
- Once kernel or process neglect the timing, the hardware buffer will be overflowed, PAUSE will be sent.

is it supported?

- Receiving and waiting are supported
- Linux sends PAUSE
 - can be turned on/off by ethtool
- Switch never sends PAUSE
 - Principally it can send, but no such production

Where is unsent data?

- The hardware buffer in the switch
- ∼ Whats happen when it overflows?
 - Switch just drops packets silently.
 - Switch doesn't send PAUSE to sender.

Depth of the buffer

- Most of the switch has only 30-60kbytes as the output queue for every interface
- Short to hold one full-built event.
- Only layer1 or layer2 can use.

Fix by software

- Like LHC experiments
- ~ PULL style data transmission
 - Every time receiver calls sender to receive data.

In the case of that,

- ∼ 4 x Switch
 - # of port > 32
 - wirerate, non-blocking
 - depth of the output queue > 50kB
- ~ 16PCs as E3.

Strategy

- Confirm PC has sufficient performance 4x4 barrel shifter of GbE.
 - ~ 2x2 seems to be OK with 3G C2D.
- Confirm we can avoid the packet loss via network switch under the Belle II data rate.

Summary

- Out candidates
 - → Barrel shifter with only PC, no switch
 - Apply switch at Layer1 and 2
- Now testing whether PC has sufficient power for 4x4 Barrel shifter of GbE.