Report from TC

Yutaka Ushiroda

SCHEDULE TOWARD TECHNOLOGY CHOICE

- Decision of major technology options must be made by Dec.25, 2009
- required from mass production schedule for CDC, PID, ECL, ...
- -If you cannot decide by yourself, somebody (internal review committee) must decide for you.
- The best experts are the group members. Reviewers will be (capable) non-experts.
- Review cannot be done in one month. Takes at least 2 3 months
- Unnecessary delay is not welcome (so please decide by yourself whenever possible)

PXD

- No apparent problem in the baseline option = DEPFET. No more major technology choice for DAY1
- Major technology choice again for PXD2.0
 - For the case DEPFET dies after a few years of operation
- Frame readout time (20μs vs. 10μs) will be determined after close discussion with TRG/DAQ/IR groups within a few months.

Restart of production at Hamamatsu

SVD

- Good news: HAMAMATSU (Japan) will restart the production of 6" DSSDs.
- But the first testable devices will be available in one year minimum. So they are not eligible for the production of a test batch.
- However, they could be back in the game for the final production.
- Three DSSD vendors to be assessed
 - Hamamatsu / SINTEF/ MICRON

7-9 July 2009

Manfred Valentan, 3rd Open Meeting of Belle2

- First sample of Hamamatsu will come in 1.5 years (after Dec. 2009)
 - Still acceptable for their mass production schedule.
 - No conflict with other sub-detector's schedule

- No other major issues in the choice of readout electronics, mechanical designs ...
 - Innermost layer r = 3.8cm, outermost layer r = 14cm

CDC

- Outer radius is not decided
 - determined by B-PID (by Dec.)
- Readout electronics
 - KEK ESG's option is the baseline

B-PID

Schedule toward technology choice

- · By the end of August
 - Make list of possible options
 - · In our case, MCP-PMT choice is important.
 - Make performance catalogue for
 - MCP-PMTs
 - QE, CE, TTS, Gain, Lifetime,
 - Detector configuration
 - Separation power (eff./fake)
 - Robustness (beam BG, T0, tracking, photon loss)

To be Checked by internal review committee?

- · By the end of December
 - Decide detector configuration and technology
 - · Show test results
 - MCP-PMT lifetime, Simulation study, electronics test

E-PID

SUMMARY

- MCP-PMT lifetime test stared and 1st result will come soon
- New ASIC for HAPD readout works OK
- More results from HAD neutron irradiation tests
- Further discussion at Nagoya
 - Overall schedule
 - Photon detector
 - Simulation
 - *etc
 - --> November meeting

ECL

Considered options

	PureCsI+PP	PureCsI+APD	BSO	PWO(-II)
Pro	λ=330nm,ρ=4.8g/cm ³ X ₀ =1.85cm,R _M =3.5cm •Low noise(0.2MeV) •Well tested.	 ← •Mag. field free. •Redundancy(2pcs) •No need to modify container. 	λ=480nm, ρ=6.8g/cm³ X ₀ =1.15cm, R _M =2.4cm •Better 2 shower separation •Match all photo-sensors •Same scintillation as PureCsl Mass production technology established.	λ=420nm, ρ=8.3g/cm ³ X ₀ =0.9cm, R _M =2.0cm ←
Worry or con	•PP long-term stability	•Noise by larger device capacitance. •Q.E. down to ~40%.	Check mechanical strength of container. How to assemble as a counter	← •Small L.O. •-25deg.C cooling •Discon. of prod.? •Huge # of elec. ch.

Cost estimation comes later

5

Barrel elec. 2.4 11.7 11.7? 14.2 N.A.

ECL

Toward final technology choice

- Guiding principle;
 - Avoid unnecessary delay of baseline option.
 - Decision to be made slightly before next Belle-II meeting.
 - Set up of PureCsI mass production takes ~half year at Kharkiv.
- Criteria and timeline;
 - Other options have to answer for homework by that time.
 - Otherwise stick to baseline option, PureCsI+PP.

Call an IRC in Sept. (budget size so large!)

KLM

No competing options

DETECTOR INSTALLATION SCHEDULE

Installation Schedule

KLM installation completed by Sept 2012
TOP installation completed by Jan2013
CDC installation completed in Feb 2013
BP+PXD+SVD inserted in March to May 2013
Endcap should be ready to be inserted by April 2013

- Start of experiment may be delayed by request from machine people
 - No official request yet
 - Several months to a half year
 - We must start within FY2013 in any case
- Before role-in, we would have a commissioning detector (Beast-II?)
 - Contribution from each sub-detector needed