KATIE: 3.5

Tevatron results
B. Casey, FNAL

PONO: 6.1
• Overall comparison on Tevatron and 4S/5S environments

• Cover selected B_s physics results from DØ and CDF
 – Try and point out where measurements can be improved with 5S data (or complement 4S data)

• Topics:
 – B_s lifetime
 – $\Delta\Gamma/\phi_s$
 – Rare decays
Tevatron versus Belle

<table>
<thead>
<tr>
<th></th>
<th>Belle</th>
<th>Tevatron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>Dedicated B program</td>
<td>Main purpose is high p_T</td>
</tr>
<tr>
<td>trigger</td>
<td>Inclusive</td>
<td>μ, or displaced vertex (semi-inclusive)</td>
</tr>
<tr>
<td>Hadronic backgrounds</td>
<td>~3:1</td>
<td>Enormous, very small fraction of produced B’s written to tape</td>
</tr>
<tr>
<td></td>
<td>~all B’s written to tape</td>
<td></td>
</tr>
<tr>
<td>PID</td>
<td>Excellent $K/\pi/\mu/e$</td>
<td>Excellent μ, OK K/π, poor e, for e from B</td>
</tr>
<tr>
<td>neutrals</td>
<td>Excellent γ, π^0, η</td>
<td>~none from B</td>
</tr>
<tr>
<td>Boost</td>
<td>~0.5 parallel to silicon, known apriori</td>
<td>~1-2 perpendicular to silicon (sensitivity to Δm_s), unknown apriori</td>
</tr>
<tr>
<td>B_s production</td>
<td>Coherent, no tagging</td>
<td>Incoherent, tagging OK</td>
</tr>
</tbody>
</table>

If you can do it, you can do it better at Belle

Still many interesting things you can only do now at the Tevatron
Tevatron versus Belle

B-factory numbers approximated for 250 fb⁻¹, Tevatron numbers estimated at 1 fb⁻¹

<table>
<thead>
<tr>
<th></th>
<th>Belle</th>
<th>CDF</th>
<th>DØ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B^+ \rightarrow J/\psi K^+)</td>
<td>~18k</td>
<td>~18k</td>
<td>~18k</td>
</tr>
<tr>
<td>(B_s \rightarrow J/\psi \phi)</td>
<td>?</td>
<td>~2k</td>
<td>~2k</td>
</tr>
<tr>
<td>(B_s \rightarrow D_s (\phi\pi)\pi)</td>
<td>?</td>
<td>~2k</td>
<td>~50</td>
</tr>
<tr>
<td>(B_d \rightarrow \pi^+\pi^-)</td>
<td>605</td>
<td>882</td>
<td>-</td>
</tr>
<tr>
<td>(B_d \rightarrow \rho^+\rho^-)</td>
<td>205</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(B_s \rightarrow K^+K^-)</td>
<td>?</td>
<td>1473</td>
<td>-</td>
</tr>
<tr>
<td>(B_s \rightarrow \phi\gamma)</td>
<td>18</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- Dimuons about same
- Tev on top for now
- Vertex versus muon trigger
- \(h^+h^-\) ~same but no \(\pi^0\)s
- Tev on top for now
- Some things only at 5S
Lifetime Ratios

Sensitive probe of higher order terms in HQE

<table>
<thead>
<tr>
<th>Theory*</th>
<th>Data</th>
<th>What we learned</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^+/B_d</td>
<td>1.06 ± 0.02</td>
<td>1.071 ± 0.009</td>
</tr>
<tr>
<td>Λ_b/B_d</td>
<td>0.90 ± 0.05</td>
<td>0.90 ± 0.03**</td>
</tr>
<tr>
<td>B_s/B_d</td>
<td>1.00 ± 0.01</td>
<td>0.94 ± 0.02***</td>
</tr>
</tbody>
</table>

1: Franco et al hep-ph/0203089
2: PDG07 + new DØ
3: HFAG07 (not recent CDF)

Statistics or something else?
Flavor specific

1-D lifetime fit to $D_s \bar{\nu}$, $D_s \pi$...

$$\tau_{FS} = \frac{1}{\Gamma_s} \left(\frac{1 + y^2}{1 - y^2} \right)$$

$$y = \frac{\Delta \Gamma}{2 \Gamma}$$

Complicated by sizeable $\Delta \Gamma = \Gamma_H - \Gamma_L$

Direct

Simultaneous fit to lifetime and polarization in $J/\psi \phi$

$$\Gamma = \frac{1}{2} (\Gamma_L + \Gamma_H)$$

$$\Delta \Gamma = \Gamma_L - \Gamma_H$$

40% reduction in error including FS

But also drives discrepancy with B_d
Reconstruct signal as D_s correlated with muon

Apply boost correction determined from MC

Fit for lifetime

~90% signal,
~10% peaking backgrounds:
$B \rightarrow D_s D$, direct $D_s D$

$$\tau_{FS}(B_s) = 1.398 \pm 0.044^{+0.028}_{-0.025} \text{ ps}$$
Hadronic B_s Lifetime

CDFII Preliminary $L=360 \text{pb}^{-1}$

- **Data**
- **Global fit**
- **Signal**
- **Cabibbo**
- **Combinatorial**
- $B \rightarrow D^* \pi$
- $B \rightarrow D \chi$
- B continuum

Fully reconstruct B_s signal and boost

No background or boost issues, but need precise trigger model

$$\tau_{FS}(B_s) = 1.60 \pm 0.10 \pm 0.02 \text{ ps}$$

Correct for trigger efficiency

Fit for lifetime
Cross checks with B_d lifetime in the same topologies:

$$DØ/world = 1.01 \pm 0.06$$

$$CDF/world = 0.99 \pm 0.02$$

World average $\sim 2.5 \sigma$ below B_d lifetime
B_s lifetime at the 5S

- Less uncertainty associated with high statistics semileptonic modes
 - known boost
 - background samples from 4S

- Tevatron:
 - Hadronic results still stat limited
 - semileptonic can move to direct lifetime ratio measurement to reduce sys.
 - Both cases: Not far from sys. limited

- If there is a B_s lifetime problem, it needs to be confirmed in a b-factory environment

- we will always want a good B_s lifetime measurement independent of J/ψ φ
\[|g^{\pm}(t)|^2 = \frac{e^{-\Gamma t}}{2} \left[\cosh\left(\frac{\Delta \Gamma}{2} t\right) \pm \cos(\Delta m t) \right] \]

\[\Delta m = m_H - m_L = 2|m_{12}| \]
\[\Delta \Gamma = \Gamma_L - \Gamma_H = 2|\Gamma_{12}| \cos \phi \]
\[\phi = \text{arg}\left(-\frac{m_{12}}{\Gamma_{12}}\right) \]

\[\Gamma(M \Rightarrow \bar{M}) \neq \Gamma(\bar{M} \Rightarrow M) \]

\[\begin{cases} \text{even} & \neq \text{light} \\ \text{odd} & \neq \text{heavy} \end{cases} \]
All measurements are untagged (or time-integrated)
- Sensitivity to CPV in untagged samples if $\Delta \Gamma \neq 0$

Everything is $\Delta \Gamma \times f(\phi_s)$
- Theory prediction for $\Delta \Gamma$ very important
 - Cant be trusted without $\tau(B_s) / \tau(B_d)$

$D_s^{(*)}D_s^{(*)}$ theory errors uncontrolled
- Best $\Delta \Gamma$ measurement but not used in constraint
ΔΓ and D(*)_s D(*)_s

Measured through correlated production of \(D_s \rightarrow φπ\) and \(D_s \rightarrow φμν\)

Or fully reconstructed channels

Measured through correlated production of \(D_s \rightarrow φπ\) and \(D_s \rightarrow φμν\)

Or fully reconstructed channels

Partial reconstruction more complicated but gives direct access to \(ΔΓ_{CP}\)

BF \((B_s \rightarrow D^{(*)}_s D^{(*)}_s) = 0.039^{+0.019}_{-0.017} +0.016_{-0.015} \)

\[
\frac{ΔΓ_{CP}}{Γ} = 0.079^{+0.038}_{-0.035} +0.031_{-0.030} \]

B. CASEY, BNM 2008
Recently proposed by to use lifetime measurement in $D_s K$ to determine sign of strong phases for $J/\psi \phi$ and remove 2-fold ambiguity

(Nandi, Nierste hep-arXiv:0801.0143)

$D_s K / D_s \pi = 0.107 \pm 0.019 \pm 0.008$

PID variable based on dE/dx and momentum asymmetry.

109±19 $D_s K$ events

~8 σ significance
ΔΓ and Untagged $J/ψ$ φ

Polarization tells if you are looking at an even or odd Bs

Lifetime tells you if you are looking at a B long or a B short

Comparing the two (plus interference terms) allows CPV measurement

$B_s \rightarrow J/ψ$ φ

5.26 < $M(B_s)$ < 5.46 GeV

c/σ(ct) > 5

Fit prob: 67.3 %
Tagged versus untagged

Adding tagging where available increases sensitivity (but $\varepsilon D^2 \sim 5\%$)

More importantly, extra terms partially reduce 4 fold ambiguity to 2 fold ambiguity.
ΔΓ/φ_s AT THE 5S

• Tevatron: 10 publications on ΔΓ and φ_s so far, only 1 includes time dependent tagging
 – Combined DØ/CDF: tagged/untagged J/ψ φ, A_s, τ_{FS} will be interesting

• If φ_s is large:
 – Decreasing ambiguities more important than tagging
 – BF(D_s(∗)D_s(∗)), τ(D_sK)

• If φ_s is large:
 – Tevatron + Belle can discover new physics before LHC
 • At least we need a tie breaker for choosing conventions

• If φ_s is small:
 – Precision τ and ΔΓ measurements will help guide theory and extraction of φ_s at LHCb
New Physics and Rare Decays

b → s: Once everyone’s best guess for new physics

\[\Delta B = \Delta s = 1 \]

\[b \rightarrow s \gamma: \text{too small to measure} \]

\[\Delta B = \Delta s = 2 \]

\[\Delta m_s: \text{too small to measure} \]
New Physics and rare decays

b → s: Still everyone’s best guess for new physics.

But now need to look where we have a chance to see small effects

CPV phases:

\[\Delta B = \Delta s = 1: \ b \rightarrow s \bar{s}s, \]
\[\Delta B = \Delta s = 2: \ \phi_s \]

Interference:

\[b \rightarrow s l^+ l^- \]

Large SM suppression:

\[B_s \rightarrow \mu \mu \]
\[(B^+ \rightarrow \tau \nu) \]
\[(K \rightarrow \pi \nu \nu) \]

(Closely related to b → s)
Radiative decay: $B \rightarrow V_{\mu\mu}$

18.5 ± 6.7 K^*

7.5 ± 3.6 ϕ

Should add not-trivial stats for world average A_{FB} in next few years

1 fb$^{-1}$:
~26 $B \rightarrow V_{\mu\mu}$ events

5 fb$^{-1}$:
~250 events
(CDF + DØ)
Annihilation: $B_s \rightarrow \mu\mu$

~most important thing we are doing in the Tevatron B program right now

2 fb$^{-1}$ results:

- Low lum, old silicon
- high lum, new silicon

Pretend there is a CDF plot here
B_{s} \rightarrow \mu \mu \text{ PAST AND FUTURE}

- **Step 1 (0.5-1 fb^{-1}):**
 - Do we understand e(\mu\mu)/e(K\mu\mu)?
 - Not at all trivial since trigger is tight, p_T distributions are different, and B p_T not well known
 - Can we reduce combinatoric background?

- **Step 2 (1-2 fb^{-1}):**
 - Multivariate background suppression
 - B\rightarrow h^+ h^- (CDF)

- **Step 3 (2-4 fb^{-1}):**
 - Smarter pre-selection
 - B\rightarrow h^+ h^- ? (CDF and DØ)
 - Fake tracks at high lum (DØ)
 - Specific cuts to remove B background
$B_s \rightarrow \mu\mu$ **VERSUS** $B \rightarrow \tau\tau$

- No serious attempt (yet) at $B_s \rightarrow \tau\tau$ at Tevatron

- At B factories?
 - BaBar limit uses fully reconstructed B data set \rightarrow not interesting (4×10^{-3})
 - Can it be done without reconstructing the other B?
 - Look at Belle note 296 for examples of finding back-to-back tau’s in hadronic events
 - 4S/5S lum ratio indicates B_d decay just as possible as B_s decay

- If there is a factor of 10 enhancement, Tevatron $\mu\mu + B$ factory $\tau\tau$ would be very interesting
Many very exciting questions will be difficult to answer at LHC (or at least require very large data sets)

- How does the higgs couple to fermions?
- How does TeV scale physics influence flavor?
- Is there lepton flavor violation at the TeV scale?
- Leptogenesis?
- Beyond TeV scale physics?
Future flavor at Fermilab

• Current accelerator complex:
 – Low mass higgs \rightarrow bb at Tevatron
 – NOvA
 – $\mu \rightarrow e$ conversion

• Project X:
 – sensitivity to minimal flavor violation signatures in kaons
 – Next generation $\mu \rightarrow e$ conversion
 – Neutrino CPV
 – Long baseline to DUSEL (proton decay)
 – dedicated fixed target tau/charm

Possibility for a very exciting US accelerator-based program complementing or competing with flavor programs in Asia/Europe
Conclusions

• Many exciting B_s results from Tevatron and more to come

• Results from the 5S can have a very significant impact, particularly on CPV measurements
 – When you think of ϕ_s, think big

• Potential for exciting accelerator based program next decade in US that will complement super B factory and LHC results