Future of Lattice Calculations for b Physics

Jonathan Flynn

School of Physics & Astronomy
University of Southampton

BNM2008 Atami Japan, January 2008
Outline

Introduction

Required parameters

Target simulations

b physics

Conclusions
Introduction

Required parameters

Target simulations

b physics

Conclusions
Introduction

Will we be able to calculate hadronic parameters for b-physics with 1% or a few % precision by 2015?

Consider

- Required simulation parameters
- Scaling formulae and computational costs
- Requirements for b-physics

I rely heavily on:

- S Sharpe, *Weak Decays of Light Hadrons*, LQCD Present and Future, Orsay 2004
- V Lubicz, *CKM Fit and Lattice QCD*, SuperB IV, Monte Porzio Catone 2006
Errors in lattice calculations

- Statistical
- Systematic
Errors in lattice calculations

- **Statistical**
 - Arise from Monte Carlo evaluation of functional integrals
 - Rule of thumb: about 100 *independent* configurations for
 \[\sim 1\% \] statistical error
 - . . . but depends on quantity studied, lattice volume, exact formulation of LQCD used

- **Systematic**
Errors in lattice calculations

- **Statistical**
 - Arise from Monte Carlo evaluation of functional integrals
 - Rule of thumb: about 100 independent configurations for \(\sim 1\% \) statistical error
 - … but depends on quantity studied, lattice volume, exact formulation of LQCD used

- **Systematic**
 - Discretisation and continuum extrapolation (\(\alpha \neq 0 \))
 - Light quarks: chiral extrapolation (\(m_l \rightarrow m_{ud} \))
 - Finite volume (\(L \neq \infty \))
 - Heavy quarks (\(m_Q \rightarrow m_{c,b} \))
 - Renormalisation constants (matching lattice to continuum)
Introduction

Required parameters

Target simulations

b physics

Conclusions
Lattice spacing

Estimate from Sharpe, LQCD present and future, Orsay 2004

Assume using $O(\alpha)$-improved action for observable \mathcal{O}

$$\mathcal{O}_{\text{latt}} = \mathcal{O}_{\text{phys}} \left[1 + c_2(a\Lambda)^2 + c_n(a\Lambda)^n + \cdots \right]$$

- assume c_2, c_n are $O(1)$
- $n = 3, 4$ depending on action used
- $\Lambda \sim \Lambda_{\text{QCD}}$ for light quarks
- $\Lambda \sim m_Q$ for heavy quarks Q (so more work needed to avoid lattice artefacts ... see below)

Simulate at a_{min} and $\sqrt{2}a_{\text{min}}$ and extrapolate linearly in a^2. Resulting error:

$$\frac{\Delta \mathcal{O}_{\text{phys}}}{\mathcal{O}_{\text{phys}}} \approx c_n(2^{n/2} - 2)(a_{\text{min}}\Lambda)^n$$
Lattice spacing estimates

\[
\frac{\Delta O_{\text{phys}}}{O_{\text{phys}}} \approx c_n (2^{n/2} - 2) (a_{\text{min}} \Lambda)^n
\]

For 1\% error (taking \(c_n = 1\))

<table>
<thead>
<tr>
<th>(\Lambda)</th>
<th>0.5 GeV</th>
<th>0.8 GeV</th>
<th>1.5 GeV</th>
<th>4.5 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{\text{min}}(n = 3))</td>
<td>0.091 fm</td>
<td>0.057 fm</td>
<td>0.030 fm</td>
<td>0.010 fm</td>
</tr>
<tr>
<td>(a_{\text{min}}(n = 4))</td>
<td>0.105 fm</td>
<td>0.066 fm</td>
<td>0.035 fm</td>
<td>0.012 fm</td>
</tr>
</tbody>
</table>

- Current lattice spacings 0.05 fm \(\leq a \leq 0.13\) fm
- OK for light quarks
- Daunting for charm
- Need effective theories for \(b\)
Minimum light quark mass

Estimate from ChPT:

\[\mathcal{O}_{\text{latt}} = \mathcal{O}_{\text{phys}} \left[1 + c_2 \left(\frac{m_\pi}{m_\rho} \right)^2 + c_4 \left(\frac{m_\pi}{m_\rho} \right)^4 + \cdots \right] \]

- Assume \(c_n \) are \(O(1) \)
- Simulate at \(R_{\text{min}} = (m_\pi/m_\rho)_{\text{min}} \) and \(\sqrt{2} R_{\text{min}} \) and extrapolute linearly in \(R^2 \)
- Resulting error:

\[\frac{\Delta \mathcal{O}_{\text{phys}}}{\mathcal{O}_{\text{phys}}} \approx 2c_2 \left(\frac{m_\pi}{m_\rho} \right)^4 \]

- For 1% error (taking \(c_2 = 1 \)):

\[\left(\frac{m_\pi}{m_\rho} \right)_{\text{min}} \approx 0.27 \quad \text{or} \quad \frac{m_l}{m_s} \approx \frac{1}{11} \quad \text{or} \quad m_\pi,_{\text{min}} \approx 210 \text{ MeV} \]
Finite volume: minimum box size

- FV effects matter when aiming for 1% precision
- Dominant effect from pion loops ⇒ estimate using ChPT
- Example: FV effects in f_{B_s}/f_{B_d} from HMChPT (Arndt, Lin, prd70 014503)
Finite volume effects

- For quantities without final state interactions
 \[\frac{\Delta \mathcal{O}_{\text{phys}}}{\mathcal{O}_{\text{phys}}} \approx ce^{-m_\pi L} \]
 where \(c \) is \(O(1) \), but depends on quantity calculated
- For 1% error (with \(c = 1 \))
 \[m_\pi L \approx 4.6 \]
- If \(m_\pi = 200 \text{ MeV} \) then
 \[L \approx 4.5 \text{ fm} \]
Heavy quarks

- From discussion above, a relativistic b quark would require $am_b \ll 1$, say

 $$a \approx 0.01 \text{ fm}$$

- This is *too small* even for Pflop computers
- Various approaches:
 - effective theories
 - interpolation between static limit and charm region
- ... see later
Renormalisation (Matching)

\[\mathcal{O}^R(\mu) = Z(\alpha \mu, g)\mathcal{O}^{\text{latt}}(\alpha) \]

- Nonperturbative (points) versus perturbative (curves) renormalisation of static-light axial current
- \(N_f = 2 \)
- PT off by \(\sim 5\% \) at hadronic scale
- Use NPR for 1\% precision
Introduction

Required parameters

Target simulations

b physics

Conclusions
Target simulations: aiming at 1% precision

<table>
<thead>
<tr>
<th></th>
<th>Light quarks</th>
<th>Charm quarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{conf}</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>α</td>
<td>1/20 fm</td>
<td>1/30 fm</td>
</tr>
<tr>
<td>a^{-1}</td>
<td>≈ 4 GeV</td>
<td>≈ 6 GeV</td>
</tr>
<tr>
<td>m_l/m_s</td>
<td>1/12</td>
<td>1/12</td>
</tr>
<tr>
<td>m_π</td>
<td>200 MeV</td>
<td>200 MeV</td>
</tr>
<tr>
<td>L</td>
<td>4.5 fm</td>
<td>4.5 fm</td>
</tr>
<tr>
<td>Vol</td>
<td>$90^3 \times 180$</td>
<td>$140^3 \times 280$</td>
</tr>
</tbody>
</table>

- Tough for charm; b not directly simulated on full-size lattice
- Are such simulations feasible? Compare computer power to estimated computational cost
Computer power

LQCD
- 1–10 Tflop/s today
- 1–10 Pflop/s 2015
Varieties of fermions

<table>
<thead>
<tr>
<th>Wilson</th>
<th>Staggered</th>
<th>Ginsparg-Wilson</th>
</tr>
</thead>
</table>
Varieties of fermions

<table>
<thead>
<tr>
<th>Wilson</th>
<th>Staggered</th>
<th>Ginsparg-Wilson</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard</td>
<td>$O(a)$-improved</td>
<td></td>
</tr>
<tr>
<td>$O(a)$-improved</td>
<td>twisted mass</td>
<td></td>
</tr>
</tbody>
</table>

JMF BNM2008 18/35
Varieties of fermions

<table>
<thead>
<tr>
<th>Wilson</th>
<th>Staggered</th>
<th>Ginsparg-Wilson</th>
</tr>
</thead>
<tbody>
<tr>
<td>• standard</td>
<td>• first to reach light masses: (m_l/m_s \sim 1/8)</td>
<td></td>
</tr>
<tr>
<td>• (O(\alpha))-improved</td>
<td>• “ugly” (Sharpe, hep-lat/0610094)</td>
<td></td>
</tr>
<tr>
<td>• twisted mass</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Varieties of fermions

Wilson
- standard
- $O(a)$-improved
- twisted mass

Staggered
- first to reach light masses: $m_l/m_s \sim 1/8$
- “ugly” (Sharpe, hep-lat/0610094)
- Staggered \Rightarrow 4 tastes per flavour
- Reduced to one by 4th root of quark determinant
- Rooted staggered fermions unphysical for $a \neq 0$, but go over to single-taste theory in limit $a \to 0$.
- rSχPT: complicated fits with unphysical effects included in fit

Ginsparg-Wilson

Varieties of fermions

<table>
<thead>
<tr>
<th>Wilson</th>
<th>Staggered</th>
<th>Ginsparg-Wilson</th>
</tr>
</thead>
<tbody>
<tr>
<td>• standard</td>
<td>• first to reach light masses: $m_l/m_s \sim 1/8$</td>
<td>• domain wall</td>
</tr>
<tr>
<td>• $O(a)$-improved</td>
<td>• “ugly” (Sharpe, hep-lat/0610094)</td>
<td>• overlap</td>
</tr>
<tr>
<td>• twisted mass</td>
<td></td>
<td>• good chiral properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10–30 price hike</td>
</tr>
</tbody>
</table>
Algorithmic progress

Tremendous progress in C21.

- **RHMC** (Clark–Kennedy, NPBPS129 850, PRL98 051601)
- **Mass preconditioning** (Hasenbusch, PLB519 177; Urbach et al, CPC174 87)
- **Domain-decomposition** (Del Debbio et al, JHEP02 056)
Algorithmic progress

Compare 100 configurations of $N_f = 2$, $O(\alpha)$-improved Wilson fermions:

- **2001** (Ukawa, Lattice2001)

 \[5 \left(\frac{0.2}{m_l/m_s} \right)^3 \left(\frac{L}{3 \text{ fm}} \right)^5 \left(\frac{0.1 \text{ fm}}{a} \right)^7 \text{ TflopsYr} \]

- **2006** (Del Debbio et al, JHEP02 056): DD-HMC

 \[0.05 \left(\frac{0.2}{m_l/m_s} \right) \left(\frac{L}{3 \text{ fm}} \right)^5 \left(\frac{0.1 \text{ fm}}{a} \right)^6 \text{ TflopsYr} \]
100 conf

$L = 2.5\, \text{fm}$

$a = 0.08\, \text{fm}$

$V = 32^3 \times 64$
Cost estimates: Wilson fermions

<table>
<thead>
<tr>
<th></th>
<th>Light quarks</th>
<th>Charm quarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{conf}</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>a</td>
<td>$1/20$ fm</td>
<td>$1/30$ fm</td>
</tr>
<tr>
<td>a^{-1}</td>
<td>≈ 4 GeV</td>
<td>≈ 6 GeV</td>
</tr>
<tr>
<td>m_l/m_s</td>
<td>$1/12$</td>
<td>$1/12$</td>
</tr>
<tr>
<td>m_π</td>
<td>200 MeV</td>
<td>200 MeV</td>
</tr>
<tr>
<td>L</td>
<td>4.5 fm</td>
<td>4.5 fm</td>
</tr>
<tr>
<td>Vol</td>
<td>$90^3 \times 180$</td>
<td>$140^3 \times 280$</td>
</tr>
</tbody>
</table>

Wilson 0.07 Pflops yr 0.9 Pflops yr

- Overhead for $N_f = 2 + 1$ and generating extra ensembles at larger a and larger m_l is a factor of about 3
- Bigger overhead for GW simulations (with good chiral symmetry)
Cost estimate: DWF fermions

DWF scaling formula (Christ and Jung, Lattice 2007)

\[
\text{Cost } \propto \left(\frac{L}{\text{fm}} \right)^5 \left(\frac{\text{MeV}}{m_\pi} \right) \left(\frac{\text{fm}}{\alpha} \right)^6
\times \left\{ C_0 + C_1 \left(\frac{\text{MeV}}{m_K} \right)^2 \left(\frac{\text{fm}}{\alpha} \right) + C_2 \left(\frac{\text{MeV}}{m_\pi} \right)^2 \left(\frac{\alpha}{\text{fm}} \right)^2 \right\}
\]

- About 1.5 Pflops yr for the light quark target simulation
- May not need such small \(\alpha \) (0.05 fm) for DWF
- Physics projects may demand larger volumes? \((L > 4.5 \text{ fm}) \)
- RBC–UKQCD able to do this around 2011?
Introduction

Required parameters

Target simulations

b physics

Conclusions
Simulating a relativistic b-quark with 1% errors needs $a \sim 0.01 \text{ fm}$

- Cost scales as a^{-6} or a^{-7}
- Prohibitive even for Pflops computers if you want a big ($L \approx 4.5 \text{ fm}$) lattice as well

Charm physics is feasible with Wilson fermions

- For $a = 0.033 \text{ fm}$, cost for 120 configurations $\sim 0.9 \text{ Pflops yr}$
Lattice b-physics: complementary approaches

- Simulate relativistic quarks in charm region and extrapolate to b
- Effective theories
 - HQET: substantial progress in nonperturbative renormalisation, use of static-link fattening and inclusion of $O(\Lambda_{QCD}/m_b)$ corrections
 - NRQCD or Fermilab/Tsukuba (RHQ) actions
- Finite-volume and step-scaling approach of Rome-II group

\[\mathcal{O}(L_\infty) = \mathcal{O}(L_0) \frac{\mathcal{O}(L_1)}{\mathcal{O}(L_0)} \cdots \frac{\mathcal{O}(L_N)}{\mathcal{O}(L_{N-1})} \]

L_0 small enough to allow $a \approx 0.01 \text{ fm}$ and $L_N \sim L_\infty$ (last factor is 1 to required precision)
- Step-scaling also used for nonperturbative renormalisation of HQET (ALPHA) and RHQ (Christ & Lin, prd76 074505/6)
Current status: interpolation

- ALPHA have implemented interpolation between static results and relativistic charm-scale results.
- ALPHA and Rome-II have combined static and step-scaling results.
- Both reach 3% precision for f_{B_s}.
- ... but still in quenched approximation and consider f_{B_s} so no chiral extrapolation.
Interpolation: static and relativistic

$f_{B_s} = 193(6) \text{ MeV}$

- $\alpha \to 0$ before $1/m_{PS}$ interpolation
- still quenched
- no chiral extrapolation

Della Morte et al, arXiv:0710.2201
Interpolation: static and relativistic/step-scaling

$f_{B_s} = 193(6)\,\text{MeV}$

$f_{B_s} = 191(6)\,\text{MeV}$

- $\alpha \to 0$ before $1/m_{PS}$ interpolation
- still quenched
- no chiral extrapolation

Della Morte et al, arXiv:0710.2201
Guazzini et al, arXiv:0710.2229
Heavy-to-heavy semileptonic decay: $B \rightarrow Dl\nu$

- Rome-II step-scaling method plus twisted BCs
- Lattice data normalized to experiment at $\omega = 1.2$
- 2% error on $G(\omega=1) \ldots$ quenched
Heavy-to-heavy semileptonic decay: $B \rightarrow D^* l \nu$

Extract h_{A_1} directly from double ratio:

$$|h_{A_1}(1)|^2 = \frac{\langle D^* | \bar{c} \gamma_j \gamma_5 b | \bar{B} \rangle \langle \bar{B} | \bar{b} \gamma_j \gamma_5 c | D^* \rangle}{\langle D^* | \bar{c} \gamma_4 c | D^* \rangle \langle \bar{B} | \bar{b} \gamma_4 b | \bar{B} \rangle}$$

Plot: $h_{A_1}(1)$ vs m_π^2

- 2 + 1 improved staggered ⇒ rSχPT fit
- Fermilab heavy quarks
- Quote 2.3% error

Laiho, arXiv:0710.1111
Current status: $B \rightarrow \pi$ semileptonic decays

- Results from Fermilab and HPQCD using different effective theories
 - Fermilab: Fermilab action (not final . . .)
 - HPQCD: NRQCD ($\text{prd73 074502, prd75 119906(E)}$)
- Results have come into agreement
- . . . but, based on same gauge field ensembles
- HPQCD: biggest errors from chiral extrapolation and perturbative matching
- $\sim 14\%$ error on form factors in $q^2 \geq 16 \text{GeV}^2$
- Need confirmation from other approaches
$f_{+,0}(q^2)$

q^2 / GeV^2

$|V_{ub}| = 3.47(29)(03) \times 10^{-3}$
$f_+(0) = 0.245(23)$
$|V_{ub}|f_+(0) = 8.5(8) \times 10^{-4}$

JMF & Nieves, prd76 031302
b-physics prognosis

- Best results likely from combining extrapolation from $m_Q \approx m_c$ with effective theory results (including Λ_{QCD}/m_b corrections)
- Few % precision requires nonperturbative renormalisation: this is being done for HQET
- Medium term: look for agreement between different approaches (HQET, NRQCD, Fermilab/Tsukuba) and study theoretical foundations
- Although quenched approximation has been banished from light quark physics, some heavy quark analysis still being developed using quenched ensembles: redo unquenched once methods established
Introduction

Required parameters

Target simulations

b physics

Conclusions
Conclusions

- Access to Pflops computers with current techniques and knowledge should allow few % precision in b-physics.
- Further theoretical and technical advances will likely improve precision further.
- Need all hadrons strongly stable (so not $B \rightarrow \rho$ decays for now).
- For b-hadron decays to two-hadron (or higher) states, we need new ideas before we can formulate a numerical approach to evaluating the amplitudes.