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What Is beamstrahlung

e The radiation of the particles of one beam due to the
bending force of the EM field of the other beam

e Many similarities with SR but

e Also some substantial differences due to very short

“magnet” (L=c,/24 2),very strong magnet (3000T at the

ILC). Short magnets produce a much broader angular
distribution



Beam-beam Iteraction (BBI) d.o.f.
(gaussian approximation)

MI“SKD:YD) h m‘-.\




BBI d.o.f. counting at the ILC

7 gaussian transverse d.o.f.
2 beam lengths

At least 4 wake field parameters, and possibly 2
longitudinal

Total 13-15 BBC parameters that may affect the
luminosity



Other possible BBI detectors

Beam-beam deflection via BPMs. Limited to 2 quantities
by Newton’s 3rd law. Semi-passive device.

Gamma ray beamstrahlung monitor. Almost certainly a
powerful device If it can be built with enough pixels,
Interferes with the beam dump (340kW is dissipated in the
dump). It observes at least the total radiation, the centroid
of the radiation, and the angular spread (10 d.o.f.)

Pairs spectrometer (10° per BBI). Probably little
Information as directionality of pair is lost.



Properties of large angle radiation

[t corresponds to the near

\][; backward direction in
Cm ey electron rest frame (5
o ﬁ‘v degrees at CESR, 2-4

degrees at KEKB)

e Lorentz transformation of
EM field produces a 8-

-t fold pattern, unpolarized
SRR CEEE as whole, but locally up to
= 100% polarized according

to cos?(2¢), sin?(2¢)



Some examples of Large Angle
BMST pattern recognition
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Large angle beamstrahlung
power

» Total energy for perfect collision by beam 1 is:
P,=0.11y?r,3mc°N,N,%/(c,%G,)
« Wider angular distribution (compared to

guadrupole SR) provides main background
separation

 CESR regime: exponent is about 4.5
* |LC regime: exponent is very small
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Short magnet approximation for
the background (quadrupoles)

Constant
angle
I[P Prox.




If the angle can be considered
large and constant...

o Assuming (atan(z/6)+atan((L-z)/ d) as the
field profile, one gets (u=y0, s,c=cos,sin(d))

Cf;) a*(ﬁ?* L X



With a short magnet MC for the

quadrupoles...
» The observed radiation * The predicted
is expected to be very radiation for a 5¢ HEP
red (IR/VI1S of order simulation and sharp
acceptance Is exactly

one, 0.02 observed)

. The observed radiation The backgrounds have
IS expected to have a a predominant

polarization of order contribution from the
several (1.5-3 halo, which we have
observed) just started to describe

ZEr0.



Large Angle Detector Concept
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 Radiated power for 5
horizontal and vertical =
polarizations c

» Two optic ports are E“U'
reserved for each

G(|[)=1, G(T)=0.5

direction (E and W) |
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CESR location

:] CESR

Storage Ring

Transfer Line Transfer Line

Linac
Converter




Beam pipe and primary mirror

Inside the beam pipe

Beam direction, 3 mrad

—72.5 degrees
9.6 to 9.9 mrad in lab

58 degrees and
10.8to 11 mrad
in beam frame

Primary mirror



Path extension volume

» Transverse view
» Optic channel

» Mirrors

» PBS

> C h rO mati C PBS First mirrors =
MmIrrors

> PMT
numeration

Moving slits

S — Split of polarizations by PB!

Beam Pipe

PMTs and chromatic mirrors
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Detector parameters of interest

 Diffraction limitis 0.1
mrad. Sharp cutoff can

be assumed \

e Optics is double
collimator. Has
triangular acceptance
with max width of
1.7mrad

» AtIP, accepted spot is
about 1cm /




e East side of CLEO
o Mirrors and optic port [ SeiE- S
~6m apart from I.LP. § | -

 Optic channel with
wide band mirrors




On the top of set-up

 Input optics
channel

e Radiation
profile
scanner

 Optics path
extension
volume




The ¥, detector

Input channel

Polarizing Beam
Splitter

Dichroic filters
PMT?’s assembly
Cooling...



Check for alignment @ 4.2GeV

Subtruction procedure. E;=4.2GeV, July 30, 2002
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e Scanning is routinely

Directiona
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Photomultipliers
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PMT rate correlations with beam currents
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Typical rates

« At HEP conditions, VIS PMTs (West) will
have a rate of about 300kHz (0.1Hz

channels are used) and IR PMTs about
6kHz.

e |n the East, 60kHz and 2kHz.

o Expected BMST rates are about 500Hz at
the nominal theta



Detector systematics detalil

 Flashlight calibration measures all relative
efficiencies to about 0.3%. Absolute efficiencies
of VIS PMT >90%, optical channels assumed to
be 75+-25%.

* Recurrent electronic noise problems on East side
(electrons)

e Two major data taking periods in July and
December 2007 (about 120 good fills each), with
dark noise measured every 8 hours.



Data analysis method

The signal sought ought to increase IR light w.r.t. VIS
light when a strong beam is opposite, so

IRIV1S=K,+Kyl 2

The method also takes into account possible small
variations of the bkg through normalization with VIS light

The expected signal in VIS light is of the order of 10 of
the rate and can be safely ignored

Runs are minimally selected (continuous beams for at least
600 seconds) with chi square and dark noise (cleaning)
cuts later to take care of noisy ones



Natural variability of machine

provided crucial evidence

e InJuly, relatively high e+
current and relatively low ¢
e- current. In December, Faom £
currents are more o £
balanced, providing a :
stronger expected BMST
signal

e InJuly, e- beam was
smaller than e+. In
December, the reverse was
true. Differing N S T UT T
polarizations expected somvesaym  Symicrons)

sy+{microns)
M h




Malin results page

 Signal(x) strongly
correlated to 1,12

Signal strongly

polarized according to

ratios of vertical
sigmas

Total rates consistent
with expectations at
10.3 mrad
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What went wrong

* The beams ended up being
longer than design

e The primary mirrors are
attached to the beam pipe. We
found a best correction of -
0.2mrad for the West PMTs and
+1.1mrad for the East (using
VIS only). This virtually killed
the East signal

e The tails of the beam decrease
In intensity during a fill

o 9mm

Siyiianng)

ol12mm

O(rad)



What went wrong (I1)

e The fractional tails of
a beam will typically
decline during a shift

* The decline much
more pronounced In
the East (electrons)
due to larger BBI,
wider beam, larger
angle, and bunch
length

[d] VIS East
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Large East distortions related to a
number of variables
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Where we are

We have been able to explain
qualitatively ALL the effects
seen in our apparatus

ALL major cross checks on the
signal are successful. In
particular, polarization effects
appear to be proven

We are currently trying to
establish the beam tail
characterization using only the
VIS data

Followed by one big
global fit (including bunch
length, sigma_Xx, crossing
angle, etc.)

Publication of NIM and
PRSTAB papers



Summary

* The first generation
Large Angle
Beamstrahlung
detector was
successful, but...

e This technique is
dominated by
systematic errors,
therefore its only
figure of merit is S/B

In order to make this technique
Into a useful monitor, three
conditions must be met:

- S/B >>1 (it was 0.03-0.06 at

CESR). We can tolerate lower
S/B if the tails are proven to be
constant during a fill

- Much more beam data
acquired

A device that can monitor the
beam halo directly



Signal and background at KEKB

KEKB Is the best place where to pursue this technique
further, due to short bunch length

Signal at KEK (assume 10 mrad observation): the signal
scales with (N3/y%c,%c,)*exp(-(ro,02/2)) 2) - about 100
times higher specific signal

The halo, assuming to be dominated by the BBI, scales like
(N/y) - close to CESR values. If it Is dominated by the

residual gas pressure, it should be much more constant and
therefore subtractable

Other improvements at KEK (cmp to CESR): beams cross
quadrupoles near axis (less background), there is no
parasitic BBI, and therefore no shifts in the crossing angle



What information would have
been useful

* Fringe map of quads
« BPMs

e Background/pressure
monitors

| o, and o, from CLEO
directly in the database



KEKB concept for the detector

o 2 viewports at +-90 degrees:
minimal backgrounds,
Insensitive of beam motion,
Insensitive of beam pipe
alignment

» Look at radiation in 4 or more
bands: e.g., A< 350nm,
400nm< A<450nm,
500nm< A<550nm,
600NnmM< A<650nm

» (this is assuming one uses only
PMTs R6095)




ILC concept (I)

Hollow mirror imaging system for detection of beamstrahlung radiation

T Y

c i
» Large solid angle to collect the beamstrahlung radiation

ﬁ = l‘-"ﬁ (Cﬂ‘?ﬂzn:.i:i - C"ﬂ‘gﬁ-umx )
» Confocal imaging to achieve high spatial resolution i
0.61-A 0.61-A —_——
Ar=Av = Ar = -
}I 5Téﬂ”:llﬂ.{ ‘STEnLﬂn'.s:\ - ’/

» Detection scheme includes optical filters, polarizers, oeoh

CCD matrix to measure angular intensity distribution ===



ILC Concept (11)

 Rates per bunch  Rates per bunch cross,
crossing (1<6<2mrad): (5<6<6mrad): about
about 20000 at 80 at nominal
nominal conditions conditions

e Sigma_y’ Is about « Backgrounds should
0.01mrad at the ILC. be very close to zero at

Tails unknown this angle
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Coherent beamstrahlung
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Beam pipe shielding

Beam pipe effects are important for long magnets (Heifets,
Mikhailichenko, SLAC-AP-083)

o, < A< d+d/R

However at the ILC R 1s of order 0.5 meters and coherent
radiation will be present in the millimeter range




Can we see this effect at current

accelerators?

» The best place is KEKB (d=3cm, o, =6mm)

e But, need the fraction of coherent power generated within
the beam pipe. Fortunately, a paper by Hoffstatter, Sagan
et al. (not yet published) has produced a code to calculate
just that

o Try to detect TM waveguide modes at first BPM (M.
Billings) with single bunches offset by 4c,. Time,
frequency, beam-beam offset and N“ signatures available



-Conclusions

Large angle Beamstrahlung seen at CESR
Its main features confirmed
Major sources of systematics found

Interesting for ILC R&D in an area of
strong need



Backup slides



Coherent enhancement at the ILC
(dynamic beams, complete
coherence)
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CB coherent enhancement

(vacuum, no angular divergence)

 C=P(CB)/P(IB)
« C(A,Q)=N exp(-(2rno,/ 1)?) (G. Bonvicini, unpublished)
« Angular effects reduce radiation by

O ((04i,/6,,9)%) (not important at CESR, factor of 100 at the
ILC). This gives a maximum CB average power at the ILC
In the neighborhood of 1W (0.1GW peak)



IB power (stiff beams)

R(d) zO-llleN ] #mer(g,(d)+g,())
Oy 0,

o CB largely leaves the
| spectrum unaffected
wi o e G and adds a factor N,
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Coherent beamstrahlung

Coherent synchrotron radiation has been observed many
times for very short beams

Coherence condition is A>c, (there is also a transverse
coherence condition, negligible here)

A similar situation arises when beams are separated -
coherent beamstrahlung

Coherent enhancement always proportional to N
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