Light Higgs in Upsilon Decays

Radovan Dermíšek

Institute for Advanced Study, Princeton

Natural Higgs mass in NMSSM

 $\tan \beta = 10, \ M_3(M_Z) = 300 \ \text{GeV}$

Light Higgs Bosons in Upsilon Decays – p. 2/16

Higgs Mass in MSSM

$$m_h^2 \simeq M_Z^2 \cos^2 2\beta + \frac{3G_F m_t^4}{\sqrt{2}\pi^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{A_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{A_t^2}{12m_{\tilde{t}}^2} \right) \right]$$

Typical mixing $|A_t/m_{\tilde{t}}| \simeq 1$

600

Typical Higgs mass

Typical Higgs mass: $A_t/m_{\tilde{t}} = 1, \ m_{\tilde{t}} = 180 \text{ GeV}$

Higgs Mass in MSSM

$$m_h^2 \simeq M_Z^2 \cos^2 2\beta + \frac{3G_F m_t^4}{\sqrt{2}\pi^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{A_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{A_t^2}{12m_{\tilde{t}}^2} \right) \right]$$

LEP limit: $m_h \gtrsim 114.4 \text{ GeV}$

satisfied for $A_t/m_{\tilde{t}} \lesssim 1$ with:

 $m_{\tilde{t}} \gtrsim 1000 \,\mathrm{GeV}$

\rightarrow LEP puzzle!

Precision electroweak data

Precision electroweak data

Search for the SM Higgs at LEP

LHWG-2003-011

Non-standard Higgs decays

R.D. and J. Gunion

LEP puzzle solved in models with non-standard Higgs decays, e.g.:

 $h_1 \to a_1 a_1 \to 4\tau, \quad 4j, \quad 4g, \quad \dots$ for $m_h \simeq 100$ GeV and $m_a \lesssim 10$ GeV there are no exp. limits!

can fully explain LEP Higgs excess at $m_h\simeq 100~{\rm GeV}$

NMSSM - brief review

MSSM + one additional singlet superfield (results in one CP-even and one CP-odd neutral Higgs bosons, and one additional neutralino):

$$W = W_{MSSM} + \lambda \ \widehat{S}\widehat{H}_u\widehat{H}_d + \frac{\kappa}{3} \ \widehat{S}^3$$

$$\mathcal{L}^{SSB} = \mathcal{L}_{MSSM}^{SSB} + \lambda A_{\lambda} S H_u H_d + \frac{\kappa}{3} A_{\kappa} S^3 + m_S^2 S S^*$$
$$\tan \beta = \frac{v_u}{v_d}, \quad \mu_{eff} = \lambda s$$

light CP odd Higgs:

$$m_{a_1}^2 \simeq 3s \left(\kappa A_{\kappa} \sin^2 \theta_A + \frac{3\lambda A_{\lambda} \cos^2 \theta_A}{2\sin 2\beta} \right)$$

 $a_1 \equiv \cos \theta_A \, a_{MSSM} + \sin \theta_A \, a_S \,, \qquad \qquad \cos \theta_A \simeq \frac{2v}{s \tan \beta}$

Light CP-odd Higgs at B factories

BR(T→γa₁)

Many ways to search, e.g.:

$$\Upsilon(3S) \to \pi^+ \pi^- \Upsilon(1S)$$

with

$$\sigma_{eff} = 179 \, pb.$$

To limit

 $Br(\Upsilon(1S) \to \gamma a_1) \lesssim 10^{-6}$

we need

 $5.6fb^{-1}/\epsilon$ collected on $\Upsilon(3S)$.

Within reach at existing facilities!

CLEO limits

S. Stone, FPCP, May 2008

measured at LEP in $e^+e^- \rightarrow W^+W^ B(W \rightarrow \mu\nu)/B(W \rightarrow e\nu) = 0.994 \pm 0.020$ $B(W \rightarrow \tau\nu)/B(W \rightarrow e\nu) = 1.070 \pm 0.029$

$$B(W \to \tau \nu)/B(W \to \mu \nu) = 1.076 \pm 0.028$$

$$R_{\tau/l} \equiv 2B(W \to \tau\nu)/(B(W \to e\nu) + B(W \to \mu\nu))$$

 2.8σ deviation from lepton universality:

$$R_{\tau/l}^{exp} = 1.073 \pm 0.026$$

arXiv:hep-ex/0412015

measured at LEP in $e^+e^- \rightarrow W^+W^ B(W \rightarrow \mu\nu)/B(W \rightarrow e\nu) = 0.994 \pm 0.020$ $B(W \rightarrow \tau\nu)/B(W \rightarrow e\nu) = 1.070 \pm 0.029$ $B(W \rightarrow \tau\nu)/B(W \rightarrow \mu\nu) = 1.076 \pm 0.028$

 $R_{\tau/l} \equiv 2B(W \to \tau\nu)/(B(W \to e\nu) + B(W \to \mu\nu))$

 2.8σ deviation from lepton universality:

 $R_{\tau/l}^{exp} = 1.073 \pm 0.026$

Delta measured at Tevatron in inclusive W production $p\bar{p} \rightarrow WX$ CDF, Nucl. Phys. Proc. Suppl. 144, 323 (2005) agrees with lepton universality:

$$Br(W \to \tau \nu)/Br(W \to e\nu) = 0.99 \pm 0.04(stat) \pm 0.07(syst)$$

arXiv:hep-ex/0412015

measured at LEP in $e^+e^- \rightarrow W^+W^ B(W \rightarrow \mu\nu)/B(W \rightarrow e\nu) = 0.994 \pm 0.020$ $B(W \rightarrow \tau\nu)/B(W \rightarrow e\nu) = 1.070 \pm 0.029$

 $B(W \to \tau \nu)/B(W \to \mu \nu) = 1.076 \pm 0.028$

 $R_{\tau/l} \equiv 2B(W \to \tau \nu)/(B(W \to e\nu) + B(W \to \mu \nu))$

 2.8σ deviation from lepton universality:

 $R_{\tau/l}^{exp} = 1.073 \pm 0.026$

 H^{\pm} expected to contribute!

arXiv:hep-ex/0412015

Delta measured at Tevatron in inclusive W production $p\bar{p} \rightarrow WX$ CDF, Nucl. Phys. Proc. Suppl. 144, 323 (2005) agrees with lepton universality:

 $Br(W \to \tau \nu)/Br(W \to e\nu) = 0.99 \pm 0.04(stat) \pm 0.07(syst)$

measured at LEP in $e^+e^- \rightarrow W^+W^ B(W \rightarrow \mu\nu)/B(W \rightarrow e\nu) = 0.994 \pm 0.020$ $B(W \rightarrow \tau\nu)/B(W \rightarrow e\nu) = 1.070 \pm 0.029$

 $B(W \to \tau \nu)/B(W \to \mu \nu) = 1.076 \pm 0.028$

 $R_{\tau/l} \equiv 2B(W \to \tau \nu)/(B(W \to e\nu) + B(W \to \mu \nu))$

 2.8σ deviation from lepton universality:

 $R_{\tau/l}^{exp} = 1.073 \pm 0.026$

 H^{\pm} expected to contribute!

arXiv:hep-ex/0412015

Derive the set of th

 $Br(W \rightarrow \tau \nu)/Br(W \rightarrow e\nu) = 0.99 \pm 0.04(stat) \pm 0.07(syst)$ H^{\pm} NOT expected to contribute!

Charged Higgs contribution to $R_{\tau/l}$

I H^{\pm} contribution to $\tau \nu \tau \nu$:

$$\frac{R_{\tau/l}^{l}}{\sigma_{W^{+}W^{-}}B(W^{+} \to t^{+}\nu)^{2}}$$

efficiency of $W \to \tau \nu$ event to pass as $W \to l \nu$ event is not negligible and so H^{\pm} effectively contributes also to mixed $\tau \nu l \nu$ channels

Charged Higgs contribution to $R_{\tau/l}$

I H^{\pm} contribution to $\tau \nu \tau \nu$:

$$R^{l}_{\tau/l} = \sqrt{1 + \frac{\sigma_{H^{+}H^{-}} B(H^{+} \to \tau^{+}\nu)^{2}}{\sigma_{W^{+}W^{-}} B(W^{+} \to l^{+}\nu)^{2}}}$$

efficiency of $W \to \tau \nu$ event to pass as $W \to l \nu$ event is not negligible and so H^{\pm} effectively contributes also to mixed $\tau \nu l \nu$ channels

I H^{\pm} contribution (simplified!) to $\tau \nu$ + hadrons:

$$R^{h}_{\tau/l} = 1 + \frac{\sigma_{H^+H^-}B(H^+ \to \tau^+\nu)B(H^+ \to hadrons)}{\sigma_{W^+W^-}B(W^+ \to l^+\nu)B(W^+ \to hadrons)}$$

underestimates by not including $H^+H^- \to c\bar{s}W^{-*}A$, $\bar{c}sW^{+*}A$, $W^{+*}AW^{-*}A$ with one $A \to \tau^+\tau^-$ that could mimic $WW \to \tau\nu + hadrons$

 $B(H^+ \to hadrons) \simeq 1 - B(H^+ \to \tau^+ \nu)$

overestimates $B(H^+ \to hadrons)$ by including $B(H^+ \to W^{+*}A)$ with $A \to \tau^+ \tau^-$, $\tau \to leptons$ and $W^{+*} \to leptons$

Charged Higgs contribution to $R_{\tau/l}$

 $m_{H^{\pm}} \simeq 75 - 85$ GeV with $B(H^+ \to \tau^+ \nu) \simeq 20 - 40\%$ seems to explain $R_{\tau/l}$

Light Charged Higgs in the MSSM

mass of the charged Higgs in the MSSM:

$$m_{H^{\pm}} = \sqrt{m_W^2 + m_A^2 - \Delta'}$$

 Δ' is SUSY correction - typically small

for $m_A \ll m_W$:

 $m_{H^{\pm}} \simeq m_W$

In the MSSM this possibility is ruled out by Higgs searches, MSSM predicts $m_h \lesssim 60$ GeV, but it is viable in simple extensions of the MSSM, e.g. NMSSM. The scenario requires $m_A < 2m_b$ and $\tan \beta \simeq 1$.

R.D. arXiv:0806.0847

MSSM-like CP-odd Higgs at B factories

MSSM-like A could be produced at B-factories: $\Upsilon \to A\gamma$ (it is advantageous to search in $\Upsilon(1S)$, (2S) and (3S) data)

results obtained from taking $\tan \beta \cos \theta_A \simeq 1$: $B(\Upsilon(1S) \rightarrow A\gamma) \simeq 5 \times 10^{-5}$ for $m_A \simeq 2m_{\tau}$ $B(\Upsilon(1S) \rightarrow A\gamma) \simeq 10^{-7}$ for $m_A \simeq 9.2 \text{ GeV}$ $B(\Upsilon(1S) \rightarrow A\gamma) \simeq 10^{-7}$ $B(\Upsilon(1S) \rightarrow A\gamma) \simeq 10^{-7}$

10-7

-0.5

0.0

0.5

 a_1 non-singlet fraction ($\cos\theta_A$)

CLEO preliminary limits: assuming $B(A \rightarrow \tau^+ \tau^-) = 1$ $B(\Upsilon(1S) \rightarrow A\gamma) < 7 \times 10^{-5} - 8 \times 10^{-6}$ depending on exact m_A

 $m_{a_1} < 2m_{ au}$ $2m_{ au} < m_{a_1} < 7.5 \, GeV$ $7.5 \, GeV < m_{a_1} < 8.8 \, GeV$ $8.8 \, GeV < m_{a_1} < 9.2 \, GeV$

-0.5

0.0

0.5

General case

light CP odd Higgs coupling to SM fermions:

normalized to SM Higgs coupling $ab\overline{b}, a\tau^+\tau^-$: $\tan\beta\,\cos\theta_A$ $ac\bar{c}$: $\cot\beta\,\cos\theta_A$ for large $\tan \beta$: $B(a \rightarrow \tau^+ \tau^-) \simeq 100\%$ for $\tan\beta \simeq 1$: $B(a \to \tau^+ \tau^-, c\bar{c}, gg) \simeq 50\%, 40\%, 10\%$ for $\tan \beta \ll 1$: $B(a \rightarrow c\bar{c}) \simeq 100\%$

Possibility of cascade decays

assuming more than one light scalar, $< 2m_b$, cascade decays would dominate:

$$a_N \rightarrow 2a_{N-1} \rightarrow 4a_{N-2} \rightarrow \ldots \rightarrow 2^{N-1}a_1$$

typically the heaviest scalar, a_N , produced in Upsilon decays

 $\Upsilon \rightarrow a_N \gamma$

but the decay product determined by the lightest, a_1 , e.g.:

$$\Upsilon \
ightarrow \ 2^{N-1} a_1 \ + \ \gamma \
ightarrow \ 2^{N-1} j j \ + \ \gamma$$

$$\Upsilon \rightarrow 2^{N-1} a_1 + \gamma \rightarrow 2^{N-1} e^+ e^- + \gamma$$

$$\Upsilon \rightarrow 2^{N-1} a_1 + \gamma \rightarrow 2^{N-1} \gamma \gamma + \gamma$$

depending on the mass of a_1 .

 a_1 can also decay into a stable neutral particles: $a_1 \rightarrow \chi \chi$

Conclusions

Light Higgs bosons present a unique opportunity for B factories:

- motivated by relations to other Higgs bosons
 - \triangleright modifying the SM Higgs decays, h
 ightarrow aa
 - possibility of a light charged Higgs

can explain $B(W \rightarrow \tau \nu)/B(W \rightarrow l \nu) = 1.073 \pm 0.026!$

 $\label{eq:constraint} \begin{array}{ll} \square & \mbox{it is advantageous to search in } \Upsilon(1S), \ (2S) \ \mbox{and} \ \ (3S) \ \mbox{data} \\ & \Upsilon(3S,2S) \rightarrow \pi^+\pi^-\Upsilon(1S), \qquad \Upsilon(1S) \rightarrow a\gamma \end{array}$

$$lacksymbol{\square}$$
 decay modes: $a
ightarrow au^+ au^-$, $car c$, gg

 \square possibility of cascade decays, $a_N \rightarrow 2^{N-1}a_1 + \gamma$

 $\triangleright a_1 \rightarrow jj$

$$\triangleright a_1 \rightarrow e^+e^-$$

>
$$a_1 \rightarrow \gamma \gamma$$

possible connection to dark matter

 $a_1 \rightarrow \chi \chi$

search for light scalar particles should be a serious part of the Super B factory program

Conclusions

Light Higgs bosons present a unique opportunity for B factories:

- motivated by relations to other Higgs bosons
 - \triangleright modifying the SM Higgs decays, h
 ightarrow aa
 - possibility of a light charged Higgs

can explain $B(W \rightarrow \tau \nu)/B(W \rightarrow l \nu) = 1.073 \pm 0.026!$

 $\label{eq:constraint} \begin{array}{ll} \square & \mbox{it is advantageous to search in } \Upsilon(1S), \ (2S) \ \mbox{and} \ \ (3S) \ \mbox{data} \\ & \Upsilon(3S,2S) \rightarrow \pi^+\pi^-\Upsilon(1S), \qquad \Upsilon(1S) \rightarrow a\gamma \end{array}$

$$lacksymbol{\square}$$
 decay modes: $a
ightarrow au^+ au^-$, $car c$, gg

 \square possibility of cascade decays, $a_N \rightarrow 2^{N-1}a_1 + \gamma$

 $\triangleright a_1 \rightarrow jj$

$$\triangleright a_1 \rightarrow e^+e^-$$

>
$$a_1 \rightarrow \gamma \gamma$$

possible connection to dark matter

 $a_1 \rightarrow \chi \chi$

search for light scalar particles should be a serious part of the Super B factory program

Conclusions

Light Higgs bosons present a unique opportunity for B factories:

- motivated by relations to other Higgs bosons
 - \triangleright modifying the SM Higgs decays, h
 ightarrow aa
 - possibility of a light charged Higgs

can explain $B(W \rightarrow \tau \nu)/B(W \rightarrow l \nu) = 1.073 \pm 0.026!$

 $\label{eq:constraint} \begin{array}{ll} \square & \mbox{it is advantageous to search in } \Upsilon(1S), \ (2S) \ \mbox{and} \ \ (3S) \ \mbox{data} \\ & \Upsilon(3S,2S) \rightarrow \pi^+\pi^-\Upsilon(1S), \qquad \Upsilon(1S) \rightarrow a\gamma \end{array}$

$$lacksymbol{\square}$$
 decay modes: $a
ightarrow au^+ au^-$, $car c$, gg

 \square possibility of cascade decays, $a_N \rightarrow 2^{N-1}a_1 + \gamma$

$$\triangleright a_1 \rightarrow \jmath \jmath$$

$$\triangleright a_1 \rightarrow e^+e^-$$

>
$$a_1 \rightarrow \gamma \gamma$$

possible connection to dark matter

 $a_1 \rightarrow \chi \chi$

search for light scalar particles should be a serious part of the Super B factory program