ECL FINESSE status

Vladimir Zhulanov BINP, Russia 2008.07.04

Algorithm details

$$\chi^{2}(A, p, t_{0}) = \sum_{i,j} (y_{i} - Af(t_{i} - t_{0}) - p) S_{ij}^{-1} (y_{j} - Af(t_{j} - t_{0}) - p) \rightarrow \min$$

$$S_{ij} = \overline{(y_{i} - \overline{y})(y_{j} - \overline{y})}$$

$$f(t) - \text{counter response}$$

$$Af(t_i - t_1 - \Delta t) = Af(t_i - t_1) - A\Delta tf'(t_i - t_1) = Af(t_i - t_1) + Bf'(t_i - t_1)$$

where t_1 - initial time (trigger time)

$$\sum_{i,j} f_i S_{ij}^{-1} (y_j - Af_j - Bf'_j - p) = 0 \qquad A = \sum_i \alpha_i y_i$$

$$\sum_{i,j} f_i' S_{ij}^{-1} (y_j - Af_j - Bf'_j - p) = 0 \qquad \square \qquad B = \sum_i \beta_i y_i \Longrightarrow \Delta t = -B / A$$

$$\sum_{i,j} S_{ij}^{-1} (y_j - Af_j - Bf'_j - p) = 0 \qquad p = \sum_i \gamma_i y_i$$

Reconstruction options

- ADC data → amplitude reconstruction is needed somewhere
- 1. In FINESSE
- 2. In COPPER
- 3. In event builder

Hardware data processing

Advantages:

- Low data amount transferred from FINESSE to COPPER
- Low processing load of the COPPER CPU Disadvantages:
- Inflexible realization the algorithm must be strictly defined and intensively tested

Output data format

Contents	Comments
HEADER	Event info + info on following data included
DSP data	A, T, quality flag for hit channels. May be skipped
ADC	Up to 64 samples per any channel. May be skipped. A decimation is possible.
FOOTER	

Offset	Contents	Comments
0	FFAA0000	Header
1	b[70] – TTRX TAG b[3124] – Event number	
2	b[40] – trigger time (0-23) b[76] – trigger source b[158] – dsp_num b[2316] – raw_len b[3124] – raw_num	0 <= trigger time <= 23 Trigger source: 0 – TTRX, 1 – TKO, 2 – LB dsp_num – number of hit channels raw_len – samples number per channel in raw ADC data raw_num – number of channels in raw ADC data
3	b[150] - dsp_mask for TKO1 b[3116] – dsp_mask for TKO2	0x80000003 means channels 1 and 2 of the TKO1 and channel 16 of the
4	b[150] - dsp_mask for TKO3 b[3116] – dsp_mask for TKO4	The number units in dsp_masks are equal to dsp_num

Output data format (cont.)

Offset	Contents	Comments
5	b[150] - raw_mask for TKO1 b[3116] – raw_mask for TKO2	
6	b[150] - raw_mask for TKO3 b[3116] – raw_mask for TKO4	The number units in raw_masks are equal to raw_num
7 6+dsp_num	DSP results b[170] – amplitude b[2918] – time b[3130] – flags	
7+dsp_num 6+dsp_num+raw_len	raw_len RAW ADC samples for the first marked channel in raw_mask	
7+dsp_num+raw_len 6+dsp_num+2*raw_len	raw_len RAW ADC samples for the second marked channel in	
7+dsp_num+ raw_num*raw_len	FF550000	FOOTER

ECL FINESSE initialization

- 1. Load driver (once after COPPER boot up): insmod cprfin_ecl.o
- 2. Load firmware (once after COPPER boot up): cp he2932.bin /dev/copper/ecl_conf:[ab|cd]
- 3. Load DSP coefficients and supplement settings:
 cp dspfile.ecldsp
 /dev/copper/ecl_dsp:[ab|cd]
- 4. Setup other parameters:
 user_soft/ecl_setup [ab|cd]
 or using library cprfin_ecl_lib. The initialization is
 made via ioctl() calls

ECL FPGA settings

There are several kinds of FPGA parameters:

- 1. parameters and coefficients concerning DSP special file
- 2. parameters of the synchronization with TKO modules and ADC work.
- 3. Masks for DSP and RAW ADC DATA they must be changed for local run and luminosity run
- Decimation factor Fd– how often FPGA stores raw ADC data. Can be set from 1/1 to 1/10⁷

Cosmics reconstruction

Reconstruction in FPGA is equal software reconstruction

Reconstructed pedestal

Reconstructed amplitude

Comparition of reconstructed time for 2 channels

Status

- The hardware implementation of DSP algorithm is fully debugged (no evidence against that). The hardware result of over then 80000 cosmics events matched sofware version of DSP restoration algorithm.
- There are 5 FINESSEs and 8 Shapers ready – That's enough to serve 1/8 of backward endcap

Installation of new electronics

8 Shapers-ADC, located outside of radioactive area

120 CsI crystalls and Premps of 1/8 of backward endcap

Copper with 2 ECL FINESSEs in EFC crate in electronic hut

We are going to replace part of current electronics

BELLE DAQ

roecl0

Current activity

 Debugging the ECL DAQ software left by Kiyama.

To do

- Install the new new electronics for 1/8 of backward endcap (120 crystalls)
- Test data pass to BELLE DAQ
- Check hardware DSP implementation and consistency of read out data on cosmics
- Measure real noise and coherent noise
- Test of DAQ reliability (with and without parallel readout from FASTBUS part of ECL) tune related software
- Measure maximum capable trigger rate
- We hope the new electronics and new DAQ will be tested with beam data at October!!!

Thank you for your attention