Results of the SPS Beam Test @ CERN

C. Irmler (HEPHY Vienna)

➢ Micron Sensor

Beam Test Setup

☑ Results

Results of the SPS Beam Test @ CERN

Micron Sensor – CV Curve

 \boxtimes V_{depl} = 24 V (step before depletion, linear fit does not work)

Micron Sensor – IV Curve

Micron Sensor Module

- ☑ Micron DDD5
- Each side read out by three APV25 chips (384 channels)
- Flex hybrids with integrated pitch adaptor
- On n-side the hybrid is glued onto the sensor.

Beam Test Setup

Beam test was performed @ CERN together with the SiLC beam test of our semiconducter group \rightarrow see yesterday's talk by T. Bergauer.

Beam setup:

- I20 GeV/c

Readout:

SVD3 readout system
 → see previous talk by M. Friedl

Installed Modules:

- ➢ JP module (2007) 2 x SVD3 DSSD (partially ganged)
- Micron module (new)
- ☑ UV module UV striplet sensor (2005)
- Flex module (2006)SVD3 DSSD (chip on sensor)
- EUDET telescope

Analysis Chain

- Pedestal subtraction
- ➢ Common mode correction
- ➢ 2D-clustering (space and time)
- ☑ Calculate cluster signal for each sample
- Perform hit time reconstruction
 > see previous talk by M. Friedl
- Solution Obtain timing, signal and noise

Method:

- Multiple samples arround the peak are recorded (6 samples at this beam test).
- \boxtimes Cluster signal for each sample is calculated.
- Fit function is applied to each waveform to optain amplitude and timing.
- Reference waveform is taken from internal calibration of the APV25 chip.
- Already explained by M. Friedl

04/07/2008

C. Irmler

Beam Test Results (Preliminary)

	Micron		JP single		JP ganged		UV		Flex	
	p-side	n-side	p-side	n-side	p-side	n-side	p-side	n-side	p-side	n-side
Average cluster width	1.67	1.13	2.31	1.92	2.10	1.76	2.21	1.88	2.28	1.91
Cluster SNR	12.6	15.1	12.7	13.9	8.5	10.5	23.6	24.0	13.8	18.4
Single SNR	16.3	16.0	19.3	19.2	12.3	13.9	35.1	32.8	20.9	25.4
Time resolution [ns]	3.89	3.04	3.49	2.74	5.24	4.30	2.55	1.16	3.50	1.90

Definitions:

- ➢ Cluster SNR := Cluster Signal / (Strip Noise * sqrt (Cluster width))
- Single SNR := Cluster Signal / Strip Noise

Results:

- \boxtimes SNR of the Micron module is good and within the range of the other modules.
- Micron has lower cluster width (no intermediate strips).
- \boxtimes Effect of the 2nd metal layer on n-side is less than that of the long strips on p-side.

 \boxtimes Poor SNR for JP module with ganged sensors \rightarrow chip on sensor (M. Friedl).

Micron Module - Signal Distribution

Signal has pretty Landau distribution; SNR depends on cluster width

Micron Module - Noise

Few noisy strips on both sides of the sensor.

04/07/2008

C. Irmler

strip []

sigma [e]

Micron Module – Time Resolution (Preliminary)

Micron Module – Time Resolution vs. SNR

Summary

☑ Testbeam performed to evaluate Micron DDD5 sensor.

- Minor deviations of CV and IV curve observed.
- \boxtimes I_{bias} above 1 µA
- \boxtimes Few noisy strips detected.
- \boxtimes SNR within the expected range.
- \boxtimes Time resolution corresponds to SNR.
- > Noise contribution of the second metal layer is less than expected.

Thank you for your attention

BACKUP SLIDES

2D-Clustering

- **2 Steps:** Search for neighbouring strips above threshold and mark them in a hit map.
 - Search continuous areas (clumps) and calculate outline.

Occupancy-Reduktion – Principle

Multipeak Mode

Occupancy-Reduktion – Hit Time Reconstruction

