MDI works for Super KEKB

2008/7/4 M. Iwasaki (Univ. of Tokyo)

MDI works for Super-KEKB

Super-KEKB \rightarrow High luminosity experiment

- It is important to protect and assure the stable detector operation under the high current beam BG
- <u>Beam BG study is important to design the IR region</u> (Machine-Detector-Interface region)

Beam BG simulation study for Super-KEKB

- To take care of the dynamic-beam effect, Super-KEKB IR design has been changed
- We must re-estimate the beam BG effect ASAP
 → important feed back to both KEKB and SVD groups

SR from upstream magnets

SVD1.0 killer source (1999)

Place QCS magnets closer to IP

IR magnet layout

Beam BG study strategy

Possible beam BG sources

SR, beam-gas, radiative BhaBha, Touschek

With the current design, much higher SR BG is expected <u>Critical energy is 14keV</u> (KEKB \rightarrow less than 2keV) <u>SR size at IR is 3-7mm</u> (for 5 σ size beam) (KEKB \rightarrow <5mm for 10 σ size beam)

Then, we'll start SR BG simulation study first No detailed QCS structure. No detector . Beam-pipe only

For the other source BG, we need realistic magnet structure. We use SC magnets for FF system (design → not fixed yet) Will study later

To study the SR BG, we need simulation tools. → Use the simulation tools developed at Univ. Tokyo

Beam line simulation at UT

Based on the following programs, we construct the Super-KEKB beam-line simulation at Univ. of Tokyo.

- SAD

To get the geometry / element definition / Twiss parameters. SAD file with dynamic beam-beam effect from Funakoshi-san (Dynamic effect \rightarrow 5 times higher ϵ , 10 times smaller β in x)

- LCBDS

Beam line simulation <u>based on GEANT4</u> developed by K.Tanabe and T.Abe (for ILC/T2K)

At first, we just align the beam line components and beam pipe in the simulation

Beam pipe

S.Uno

Relationship between s-Belle and Super-KEKB

In Super-KEKB, crossing angle will be increased : 22mrad \rightarrow 30mrad

Belle beam pipe (and SVD??) axis at Super-KEKB

- Belle solenoid
- Center of the LER and HER (7mrad from Belle solenoid)
- HER axis (22mrad from Belle solenoid)

We put the beam pipe on HER axis in our simulation (to avoid SR from HER)

LER beam-line simulation

LER beam-line simulation

LER beam line simulation

 $1\sigma/2.5\sigma$ beam physics process on, 2000 event each

HER simulation

HER simulation

HER beam line simulation

 $1\sigma/2.5\sigma$ beam <u>physics process on</u>, 10000 event each

Many SR from QC1/QC2 \rightarrow because QCS aperture in our simulation is too large...

Same problem: Many SR from QC1/QC2 \rightarrow QCS aperture in our simulation is too large

Beam-BG study for Super-KEKB is very important We have just started the BG simulation study We start SR study with the new Super-KEKB IR design → feed back to KEKB and SVD group ASAP Develop the beam line simulation tools

Estimate SVD occupancy

Comparison btw current KEKB

We also need to re-estimate the other BG sources Set up the simulation tools

New contributions to the super-KEKB IR works would be highly welcomed!!

Back up

2005 O.Tajima

2005 O.Tajima

Summary on detector background

- Backscattering of QCS-SR is not serious, but strongly depends on IR chamber configuration
- Vacuum level is very important
 - > Original design (5x10⁻⁷ Pa) is serious \rightarrow BGx25
 - > w/ further effort (2.5x10⁻⁷ Pa) \rightarrow BGx18 -30%
- Increasing of Touschek origin BG
 - > Smaller bunch size & higher bunch currents are reason
 - Might be reduced by further study
- Radiative Bhabha origin BG can be suppressed
- Beampipe radius 1.5cm \rightarrow 1cm
 - > Further simulation study of shower particles into SVD is important

Dynamic beam-beam effect at Super-KEKB

The focusing force of the beam-beam interaction

- squeezes the beam at IR
- increases the emittance drastically

 \rightarrow affects all around the ring ... "dynamic beam-beam effect"

Dynamic effects at Super-KEKB is very strong

Beam optics is re-considered, and there is a big change in the IR magnet layout

We must re-estimate the beam BG with the new IR design

Dynamic beam-beam effect

Parameter search for smaller beam size Y.Funakoshi

	no b-b	1	nominal			higher emittance			higher βx*			highe		
Vx0		.503	. <mark>505</mark>	.510	.503	.505	.510	.503	.505	.510	.503	<mark>.50</mark> 5	.5 <mark>1</mark> 0	
Emittance ε (wo dynamic effect)							17	12	12	12	12	12		
β _{x0} ' [cm]	20	20	20	20	20	20	20	40	40	40	β (wo dynamic effect)			c effect)
Line and the second sec	0	.270	.270	.270	.135	.135	.135	.272	.272	.272	.273	.273	.273	
٤ _x [nm]		81.9	<mark>ε (w</mark>	/ith dynamic effect)					64.3	46.7	82.3	64.4	46.8	
β _x ΄ [cm]		1.50	1.93	2.77	2.1	2.7	<mark>3.8</mark>	2.99	3.87	.53	β (w	ith dy	/nam	nic effect)
σ _x @ QC2RE [mm]	4.0	39.5	30.9	5 times higher ϵ , 10 times smaller β in x										
Nc	Dynamic effect at Super-KEKB is very strong													

Shape of the input beam

LCBDS supports following 3 kind of the beam shapes

 ${\rm BeamShapeFlag}=0$

BeamShapeFlag = 1

BeamShapeFlag = 2

This time, we use BeamShapeFlag=0

We define the beam with the edge of $x = sqrt(\beta \epsilon) \times 2$ as 1σ size beam

Beam size @ IR Q-magnets Vx =.505

	QC1LE			QC1RE		QC2RE		QC2LP		QC2RP
β _x *=20cm QC2RE:元	8.2 (41)	26.9 (134.5)	11.6 (58)		28.8 (144)		14.7 (73.5)		18.6 (93)
β _x *=20cm QC2RE- >IP	8.4 (42)	19.0 (95)		12.0 (60)		20.7 (103.5)				
β_x^* =40cm QC2RE-	5.9	13.4		8.5		14.6		9.8		12.3
			QC1	LE	QC2LE	QC1RE	Q	C2RE	QC2LP	QC2RP
Field	Field gradient Pole length b bore radius		15.	5	3.4	12.0		8.8	6.7	3.4
Pol			0.6	54 2.0		0.75		0.8	0.6	1.0
b bor			25	5	50	48		90	80	40
С	Current			20	3400	11050	28400		17100	1980
CO	/pole	3		8	3	3 16		15	3	
Curren	t density of									
Septun	A/mm^2	30)	10	70		24	31	15	
Field in	the area for									
couter-cir	Gauss	0~-0	0.65	0~-0.4	0~-1.1	0~	- <mark>0.35</mark>	0~-0.85	$0 \sim -0.35$	

Table 3.3: Parameters of special quadrupole magnets

We set the aperture of QC1, QC2 and QCS to be 15cm

Reduction of Hard-SR

Scattered at downstream photon-stop (OC2RE chamber)

Put p Put p OCS magnet

Put photon-stop far place (~9m)
Chamber material: Cu

Hard-SR ~ 29 kRad/yr