I would like to thank Prof. Y. Sakai and Dr. Y. Iwasaki for their kind help in BESIII trigger design, and I am happy that we have this chance to share our experience of BESIII in KEKB Trigger and DAQ design.

Zhen'An, TriggerGroup,IHEP

High Speed Signal/Data Transmission in BESIII Trigger and PANDA TDAQ Systems

Zhen'An LIU Trigger Group, IHEP Beijing

2nd Open meeting for the KEKB proto-collaboration July 3-4th 2008

Outline

- Background infor for BESIII trigger
- Study of High speed signal transmission in BESIII trigger
- BESIII trigger
- PANDA TDAQ
- Computer Node
- Proof of Concept Application: HADES DAQ Upgrade

LIU.Zhen'An, TriggerGroup, IHEP

Comments and conclusion

Key points in BESIII trigger Design

- Optical isolation with FEE, to prevent from ground loop current interference
- Most latest FPGAs, Boards with simplicity, high reliability
- FPGA online downloadable via VME
- Generalized hardware, firmware for different function, for easy maintenance
 Scheme optimization with simulation

LIU, Zhen'An, TriggerGroup, IHEP

Difficulties for MDC tracking

	1	2	3	4	
SL 1	40	44	48	56	/16
SL 2	64	72	80	80	/16
SL 3	76	76	88	88	/8
SL 4	100	100	112	112	/16
SL 5	128	128	128	128	/16
SL10	128/256	128/256	128/256	128/256	/16

Difficulties

Bad number of wires for both axial and stero layers (trigger point of view,

LIU, Zhen'An, TriggerGroup, IHEP

- Hard to define Sector/board border for signal input)
- Hard to input signals via 9U front and rare pannels
- **Too many sharing signals for neighbor boards**

Solution:

- RocketIO for input signals (32bits/ch, 8b/10b)
- private VME J3 Backplane for sharing signals

2008-07-4

Study of High speed signal transmission in BESIII trigger

LIU, Zhen'An, TriggerGroup, IHEP

2008-07-4

MFT (MDC Fiber Transmitter)

- 2796 hits signals from MDC QT boards are collected in MFT, 32 channels per MFT
- Virtex-II Pro FPGA: XC2VP2
- Fuctions:

2008-0

- Stretching to 500ns ۲
- Synchronization + alignment signals(private Protocol)
- Serialization(8b/10b) •

Fig.2. Organization of the optical link

LIU, Zhen'An, TriggerGroup, IHEP

TKF (Track Finder)

XC2VP40 : FF1152, 804 user IOs, 43,632 logic cells, 3,456Kbit BRAM, 12 RocketIOs, 2 PowerPCs, 192 multiplier blocks

10 layers 9UVME PCB Functions:

- Deserialization
- Channel alignment

Clock correction

20.000

40,000

100,000

Data alignment

Continuous

- Parallel bits transmitted in same clock => recovered also in same Clock
- Special private protocol

LIU, Zhen'An, TriggerGroup, IHEP

2008-07-4

- Crystal
 - Must follow the recommendation
- Use built-in DCM
- Clocks
 - REFCLK
 - USRCLK
 - USRCLK2

Example of RocketIO Instantiation

);

);

RocketIO 1: GT CUSTOM generic map(CRC END OF PKT => "K29 7", CRC FORMAT => "USER MODE", CRC_START_OF_PKT => "K27_7", TX CRC USE => TRUE, TX DATA WIDTH => 4. REFCLK=>REFCLK IN, port map (TXUSRCLK=>TXUSRCLK IN, TXUSRCLK2=>TXUSRCLK2 IN, TXCHARISK(3 downto 0)=>TXCHARISK_IN(3 downto 0), TXDATA(31 downto 0)=>TXDATA IN(31 downto 0), TXFORCECRCERR=>TXFORCECRC IN, TXN=>TXN OUT, TXP=>TXP OUT,

LIU, Zhen'An, TriggerGroup, IHEP

Transmission protocol

- Transmitter side
- Receiver side

Good reliability with RocketIO

LIU,Zhen'An, TriggerGroup,IHEP

2008-07-4

BESIII trigger Block diagram

Transfer of Base strength Research Research and Research and Research Res

TOFPR

2008-07-4

LIU,Zhen'An, TriggerGroup,IHEP

Installation

TCBA: EMC preprocessor and transmitter

2008-07

LIU, Zhen'An, TriggerGroup, IHEP

Status of BESIII trigger Successful in Cosmic-ray test Commissioning with BEPCII

LIU.Zhen'An, TriggerGroup,IHEP

PANDA: DAQ Requirements

- Interactions: 10**7 Hz
- Data: 200GB/s
- Continuously Sampling ADC
- No hardware trigger

- Hi Speed Devices
- Large Buffers
- Large Bandwidth

PANDA DAQ & Trigger

+ 2 Alternative DAQ Concepts Still Under Discussion

2008-0

LIU,Zhen'An, TriggerGroup,IHEP

The Compute Node(CN)

LIU, Zhen'An, TriggerGroup, IHEP

- 5 Virtex4 FX60 FPGA
 - Large Computer Power
- 10 GB DDR2 RAM (2GB per FPGA)
 - Buffering capabilities
- 2 Embedded PowerPC in each FPGA
 - Slow control

32Gbit/s Bandwidth

- 13x RocketIO to backplane
- 5x Gbit Ethernet Front Pannel
- 1x Gbit Ethernet Backplane
- 8x Optical Links
- ATCA Compliant
 - Manageability

The Compute Node

2008-07-4

LIU,Zhen'An, TriggerGroup,IHEP

Prototype of the CN by IHEP Beijing

- Backplanc
 FPGA #O
 FPGA #1-4
- Front Panel
 - Optical LinksEthernet Plugs

Proof of Concept Application: HADES DAQ Upgrade

- Est.: 2009
- Read Out Trigger
 - TRB
 - Faster Readout
- Trigger and Data
 - Optical Links
- Include Tracking in Trigger
- 12 Compute Node
 - 1 Full ATCA shelf

COMPUTE NODE

- Online Tracking
- RICH & TOF
 - Matching with Tracking
- Event Building on FPGA
- Others
 - Remote Upgrade
 - IPMI

LIU,Zhen'An, TriggerGroup,IHEP

Motivation/Aim

Produce a Configurable and Scalable Hardware Platform for Multiple Applications & Experiments

- Capable of High Performance Computing
- Large Bandwidth
- Real Time processing
 - Trigger
- Flexibility: Reusable
 - HADES BESIII PANDA
- Scalability
 - Flexible network topology

LIU,Zhen'An, TriggerGroup,IHEP

Comments and Conclusion

LIU, Zhen'An, TriggerGroup, IHEP

- RocketIO can be used for HS transmission at KEKB
- Awareness to KEKB TDAQ design:
 - System clock
 - Larger trigger latency
 - Latency by RocketIO (SEDES takes time)
 - Needs larger pipeline buffer in FEE
 - Synch. + alignment
 - Uncertainty in recovered clock
 - Opt-cable length difference
 - Opt-transceiver difference

2008-07-4

LIU,Zhen'An, TriggerGroup,IHEP