L1 Trigger Y.Iwasaki @ 2nd open meeting for the proto-collaboration 2008/07/04

Physics Targets

Process	C.S. (nb)	R @ L=10^34 (Hz)	R @ L=10^35 (Hz)
Upsilon(4S)	1.2	12	120
Continuum	2.8	28	280
μμ	0.8	8	80
ττ	0.8	8	80
Bhabha	44	4.4	44
Y-Y	2.4	0.24	2.4
Two photon	15	35	350
Total	67	~100	~1000

- Cross-sections are calculated within the detector acceptance

- The rate with Bhabha and γ - γ are pre-scaled by factor 100
- Two-photon cross-section is obtained with Pt>0.3 GeV cut

Level 1 Trigger

2008/07/04 GDLS Schematic Version 1.01 Y Iwasaki

Global Decision Logic Sub-Triggers (~50bits) **Input Delav Trigger Decision Pre-Scaler** Timing Decision # tracks # clusters energy sum Bhabha timing Sub-Trigger finder info. (~4000bits) Track segments **Cluster energy PID** hit patterns

- ✤ Keep Belle triggering scheme
 - ✤ Present L1TRG works very fine
 - ✤ If no-one comes with better idea ...
 - In hardware level, new technology should be used to be more flexible and redundant for backgrounds and new targets
- ✤ Requirements
 - Fast decision : latency $3 \sim 3.5 \,\mu \,\text{sec}$
 - \sim Tight but efficient logic : S/N >> 0.1, ε(Υ) ~ 1
 - Redundant for any background conditions
 - ✓ Output rate @ L=10³⁵
 Average L1 rate ~ 10 kHz, Maximum ~ 30 kHz

Finer Info. from Sub-triggers

- ✤ GDL gather finer info. from sub-triggers
 - ✤ To make combination triggers in GDL level.
 - ✤ To be more flexible and redundant for backgrounds,
 - ✤ To catch up new physics targets
 - ✤ To send finer info. to Level 2 trigger (if necessary)
- ✤ CDC sub-trigger
 - Charged track (θ , ϕ , pt, pz) ... order 2000 bits
- ✤ ECL sub-trigger
 - → Energy cluster (θ, φ, E) ... order 2000 bits
- ✤ PID (& KLM) sub-trigger
 - → Hit position (θ , ϕ) ... order 100 bits x2
- ✤ To receive such info., we need new hardwares

Sub-Triggers

Trigger Logics

Main triggers for hadronic events

- ✤ Two-track
- ✤ Total energy
- ✤ Isolated cluster
- ✤ Radiative events
 - ✤ Combination of ECL and CDC
- Low multiplicity events
 - ✤ High efficiency required ?
- ✤ Bhabha events
 - ✤ High efficiency, high purity
- Cosmic events
 - ∞ Not so important with high luminosity ?
- ✤ Veto triggers
 - 🔹 Bhabha
 - ✤ Cosmic

Trigger Rate

Do we need Level 2 TRG?

- Normalized trg
 - = Rate @ L=1x10³⁴
- Improvements seen in Norm. trg is due to the vacuum
- Simple extrapolation

	best	worst
L=1x10 ³⁵	2.5 kHz	13 kHz
L=2x10 ³⁵	5.0 kHz	26 kHz
L=8x10 ³⁵	20 kHz	100 kHz

✤ Worries

- ✤ Vacuum@IR in sKEKB
- Radiative Bhabha entering endcaps
- Max. luminosity

CDC Trigger

- Track Segment Finder (TSF) are formed in all super layers for 3D track identification
- All TSF info. is sent to two track finders (TF)
 - ✤ 2D track
 - ✤ 3D track
- 3D track is very powerful for background reduction
 - ∞ See E. Won's talk
- TSF and TF use Universal Trigger Board 2 (UT2)

ECL trigger

✤ See B.G. Cheon's talk

PID (& KLM) triggers

- ✤ No discussion yet (except for PID timing)
- ✤ PID timing
 - See G. Varner's talk

Universal Trigger Board 2

10

- ✤ for CDC and GDL
- ✤ 6U VME board
- FPGA Core is Virtex5
- ✤ NIM x 3 I/O pairs
- ✤ Optical RocketIO
 - ∞ 6GHz x 16 I/O pairs
 - ... 6000 channels in 16MHz
 - ... 2400 channels in 40MHz
- ✤ Differential I/O x 32 pairs
- Design of proto-type is on going
 - ✤ Delivered in this fiscal year
 - ∞ 3GHz x 16 I/O pairs

tsim

✤ Purposes

- ✤ To design trigger logics
 - ✤ Trigger efficiency estimation
 - Background reduction power
- ✤ To check hardwares
 - Compare hardware and "tsim" response to pin down problems
- ✤ It's time to start trigger design with realistic simulation
 - ✓ 1st version of G4 simulation is avilable
 - ✤ Give us enough information to simulate the trigger response
 - ✤ We reuse present "tsim" codes as much as possible
 - G4 can output Panther banks, which can be accepted by "tsim" with minimum modifications on present "tsim"
- "tsim" coordinator
 - ∞ E. Won (Korea U.)

Present Man Power

- Charged Track Triggers
 - Solution → 3D trigger : use axial and stereo wires
 - ∞ E. Won, B.G. Ko, B.Y. Han (Korea U.)
 - ✤ 2D trigger : use Hough algorithm
 - ∞ Y. Iwasaki (KEK)
- ✤ Energy Sum, Isolated Clusters, and Timing
 - ∞ B.G. Cheon, Y. Unno, S.G. Kim, I.S. Lee (Hanyang U.)
 - ∞ M.J. Lee, S. Ryu, S.K. Kim (SUN)
 - ∽ Y. Usov (BINP)
 - ∞ S.R. Kim (Notice Co.)
- ✤ Timing Trigger from PID device
 - ∞ G.S. Varner (U. Hawaii)
- ✤ Global Decision Logic
 - ∞ Y. Iwasaki (KEK)