Precocious signs of the Beyond in Flavor Physics KEK, Mar.19,'08

Amarjit Soni HET, BNL (<u>soni@bnl.gov</u>, adlersoni@gmail.com)

Outline

- I. Introduction & Motivation
- Status of the CKM-Paradigm
- The importance of being precise
- II.Possible Signs of NP:
- a) Δ S (penguin modes)
- b) Δ _{Kπ}
- c) B->X_s v
- Mixings: B & D
- III. Illustrative models: T2HDM, 4th family, Warped X-Dim, Z', SUSY
 Repurcussions for the SFF, LHC
- Summary& outlook

Introduction & Motivation

- While a conclusive evidence for breakdown of SM in flavor physics cannot be made at present , in the last few years several interesting (and rather strong) hints have emerged.
- Although, taking too seriously every little deviation is not desirable and may be counterproductive;
- disregarding or overlooking the hints can be equally unwise and in fact can be more damaging. Following these up in flavor & collider physics and in theory may prove beneficial.

{ based in part on Enrico Lunghi + A. S. arXiv:0707.0212 + in Prep}

1st ('01-'04) confrontation of BFs with the SM

Lightning recap to SM-CKM paradigm of CPV

Precocious signs of BeyondA.Soni

CKM unitary matrix

CKM matrix relates weak and mass eigenstates of quarks Four physical parameters; fundamental constants of the SM Complex elements allow (only source of) CP violation in SM Unitary means $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Wolfenstein expansion (A~0.82, λ ~0.23, ρ , η) in powers of λ :

$$\mathbf{V} = \begin{pmatrix} \mathbf{V}_{ud} & \mathbf{V}_{us} & \mathbf{V}_{ub} \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ \mathbf{V}_{td} & \mathbf{V}_{ts} & \mathbf{V}_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & (A\lambda^3(\rho - i\eta)) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

Only two complex elements to this order; both small $\sim \lambda^3$

) Jan 2007

B Physics from the B Factories

Precocious signs of BeyondA.Soni

Youngjoon Kwon

Unitarity triangle

Represent as "Unitarity Triangle" in complex ρ , η plane To O(λ^6), use corrected values: $\overline{\rho} = \rho(1 - \lambda^2/2), \ \overline{\eta} = \eta(1 - \lambda^2/2)$ η $\alpha/\phi_2 = \arg\left[-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right]$ Apex is $(\bar{\rho},\bar{\eta})$ $V_{ud}V_{ub}$ $R_u =$ α/ϕ_2 V_{cd}V_{cb} $\frac{V_{td}V_{tb}^{*}}{V^{*}}$ $+\overline{\eta}^2$ R_t $R_t =$ Ru β/ϕ_1 // (0 ρ . (1,0)(0,0) $V_{ud}V_{ub}^{*}$ $V_{ed}V_{eb}^{*}$ arg V^{*}_{ub} $\beta / \phi_1 = \arg$ $\gamma/\phi_3 = \arg$

> Precocious sigr BeyondA.Som

Youngjoon Kwon

1st Hints of confirmation Of CKM-CP violation

Atwood&A.S, hep-ph/0103197

Theoretical Underpinnings (see e.g. Ciuchini et al, hep-ph/0012308)

• CP violation in the kaon system which is expressed by $|\varepsilon_K|$

$$|\varepsilon_K| = C_{\varepsilon} A^2 \lambda^6 \bar{\eta} \left[-\eta_1 S(x_c) + \eta_2 S(x_t) \left(A^2 \lambda^4 \left(1 - \bar{\rho} \right) \right) + \eta_3 S(x_c, x_t) \right] \hat{B}_K,$$
(2.4)

where

$$C_{\varepsilon} = \frac{G_F^2 f_K^2 m_K m_W^2}{6\sqrt{2}\pi^2 \Delta m_K}.$$
(2.5)

 $S(x_i)$ and $S(x_i, x_j)$ are the appropriate Inami-Lim functions [27] of $x_q = m_q^2/m_W^2$, including the next-to-leading order QCD corrections [28, 30]. The most uncertain parameter is \hat{B}_K .

• The $B_d^0 - \bar{B}_d^0$ time oscillation period which can be related to the mass difference between the light and heavy mass eigenstates of the $B_d^0 - \bar{B}_d^0$ system

$$\Delta m_d = \frac{G_F^2}{6\pi^2} m_W^2 \eta_c S(x_t) A^2 \lambda^6 \left[(1 - \bar{\rho})^2 + \bar{\eta}^2 \right] m_{B_d} f_{B_d}^2 \hat{B}_{B_d} , \qquad (2.2)$$

where $S(x_t)$ is the Inami-Lim function [27] and $x_t = m_t^2/M_W^2$. m_t is the \overline{MS} top mass, $m_t^{\overline{MS}}(m_t^{\overline{MS}})$, and η_c is the perturbative QCD short-distance NLO correction. The remaining factor, $f_{B_d}^2 \hat{B}_{B_d}$, encodes the information of non-perturbative QCD. Apart for $\bar{\rho}$ and $\bar{\eta}$, the most uncertain parameter in this expression is $f_{B_d}\sqrt{\hat{B}_{B_d}}$. The value of $\eta_c = 0.55 \pm 0.01$ has been obtained in [28] and we used $m_t = (167 \pm 5)$ GeV, as deduced from measurements of the mass by CDF and D0 Collaborations [29].

• The limit on the lower value for the time oscillation period of the $B_s^0 - \bar{B}_s^0$ system is transformed into a limit on Δm_s and compared with Δm_d

$$\frac{\Delta m_d}{\Delta m_s} = \frac{m_{B_d} f_{B_d}^2 \hat{B}_{B_d}}{m_{B_s} f_{B_s}^2 \hat{B}_{B_s}} \left(\frac{\lambda}{1 - \lambda^2/2}\right)^2 \left[(1 - \bar{\rho})^2 + \bar{\eta}^2\right].$$
(2.3)

The ratio $\xi = f_{B_s} \sqrt{\hat{B}_{B_s}} / f_{B_d} \sqrt{\hat{B}_{B_d}}$ is expected to be better determined from theory than the individual quantities entering into its expression. In our analysis, we accounted for the correlation due to the appearance of Δm_d in both Equations (2.2) and (2.3).

• The relative rate of charmed and charmless b-hadron semileptonic decays which allows to measure the ratio

$$\left|\frac{V_{ub}}{V_{cb}}\right| = \frac{\lambda}{1 - \lambda^2/2} \sqrt{\bar{\rho}^2 + \bar{\eta}^2}.$$
(2.1)

Precocious signs of BeyondA.Soni

B-Factory "early" result & implication

Precocious signs of BeyondA.Soni

of

12

Celebration II: A beautiful theory paper which not only suggested the need for the 3rd family, before the discovery of charm and tau, its framework is vindicated in detail through exhaustive experimentation ~35 years later!!

652

Progress of Theoretical Physics, Vol. 49, No. 2, February 1973

CP-Violation in the Renormalizable Theory of Weak Interaction

Makoto KOBAYASHI and Toshihide MASKAWA

Department of Physics, Kyoto University, Kyoto

(Received September 1, 1972)

In a framework of the renormalizable theory of weak interaction, problems of CP-violation are studied. It is concluded that no realistic models of CP-violation exist in the quartet scheme without introducing any other new fields. Some possible models of CP-violation are also discussed.

Precocious signs of BeyondA.Soni

And of course we must not forget the C!

UNITARY SYMMETRY AND LEPTONIC DECAYS

Nicola Cabibbo CERN, Geneva, Switzerland (Received 29 April 1963)

We present here an analysis of leptonic decays based on the unitary symmetry for strong interactions, in the version known as "eightfold way,"¹ and the V-A theory for weak interactions.^{2,3} Our basic assumptions on J_{μ} , the weak current of strong interacting particles, are as follows:

(1) J_{μ} transforms according to the eightfold representation of SU₃. This means that we neglect currents with $\Delta S = -\Delta Q$, or $\Delta I = 3/2$, which should belong to other representations. This limits the scope of the analysis, and we are not able to treat the complex of K^0 leptonic decays, or $\Sigma^+ \rightarrow n + e^+ + \nu$ in which $\Delta S = -\Delta Q$ currents play a role. For the other processes we make the hypothesis that the main contributions come from that part of J_{μ} which is in the eightfold representation.

(2) <u>The vector part of J_{μ} is in the same octet as</u> the electromagnetic current. The vector contribution can then be deduced from the electromagnetic properties of strong interacting particles. For $\Delta S = 0$, this assumption is equivalent to vector-

BeyondA.Soni

The importance of being precise

Should 10% tests be good enough?

Vital Lessons from our past

- LESSON # 1: Remember ε_{K}
- Its extremely important to reflect on the severe and tragic consequences if
- Cronin et al had decided in 1963 that O(10%) searches for ε were good enough!
- Imagine what an utter disaster for our field that would have been.

Note also even though CKM-CP-odd phase is O(1) (as we now know) in the SM due to this O(1) phase only in B-physics we saw large effects... in K (miniscule), D(very small), t(utterly negligible). Therefore, most likely the effects of a BSM-phase on B-physics will only be a perturbation.

Lesson #2

Remember m_v

Just as there was never any good reason for $m_v = 0$ there is none for BSM-CP-odd phase not to exist $\Delta m^2 \sim 1eV^2 \sim 1980 \rightarrow \Delta m^2 \sim 10^{-4} eV^2 \dots 97$

Osc. Discovered....

Similarly for BSM-CP-odd phase, we may need to look for much smaller deviations than the current O(10%)

-> This Clearly demands greater precision from theory BeyondA.Soni

Post BFs Mantra: For Theory and for Experiment

PRECISION has become OF THE UTMOST IMPORTANCE

-> its of limited use to measure quantities that theorists cannot cope with...

Example B-> X_s gamma versus B->K* gamma....Similarly for CPV observables

Prospects for improved exptal precision

LHCb ...(Sheldon Stone @CERN, Mar 07)

View of the Pit

BeyondA.Soni

Proposed schedule

SuperB @ INFN

	PEP-II	SuperB
σ_{z}	1cm	1cm
$\theta_{1/2}$	0	25 mrad
$\sigma_{\mathbf{x}}$	100 µm	2 . 7 µm
$\sigma_z{}^{\text{Eff}}$	1cm	40 µm
β_v	0.8 cm	80 µm
σ_{v}	4 µm	12 nm
ξv	0.07	< 0.07
L	~ 10 ³⁴	~ 10 ³⁶

Tor Vergata site between 3.0 Km and 2.2 Km

Aaron Roodman @DPF06

Precocious signs of BeyondA.Soni

Precocious signs of BeyondA.Soni **Prospects for** *improved lattice calculations*

Note the unique role of B_K

Whereas B-> ψ K... (φ_1), B-> $\pi\pi$, $\pi\rho$, $\rho\rho$ (φ_2), B->DK..(φ_3), with no theory input, it is simply not possible to translate ϵ_K on to the CKM-phase without theory input for B_K; B_K is indispensable for demonstrating that B & K CP have a common origin

Precocious signs of BeyondA.Soni

~25 years of B_K

C. Bernard, A. Soni / Weak matrix elements on the lattice

FIGURE 4 The amplitude $\langle \bar{K}^0 | (\Delta s = 2)_{LL} | K^0 \rangle \times 10^2$ vs. m^2 . The solid line is a naive (uncorrelated) fit to the data.

 $\langle \bar{K}^0 | (\Delta s = 2)_{LL} | K^0 \rangle$ with Wilson fermions has been proposed in Ref. 32. One starts by writing the CPTh form for the matrix elements of the continuum (physical) operator and for its Wilson lattice counterpart:

$$\langle \bar{K}^{0} | (\Delta s = 2)_{LL} | K^{0} \rangle^{cont} = \gamma (p_{K} \cdot p_{R}) + \cdots$$
$$\langle \bar{K}^{0} | (\Delta s = 2)_{LL} | K^{0} \rangle^{latt} = \alpha + \beta m^{2} + \gamma' (p_{K} \cdot p_{R}) + \cdots,$$
(8)

where the α and β terms in the lattice amplitude (and the change from γ to γ') are due to "bad" chirality operators such as O'_{\pm} which have not been correctly removed by perturbation theory. Note that for K, \bar{K} at rest, $p_K \cdot p_{\bar{K}} =$ m^2 ; while for the crossed amplitude $\langle \bar{K}^0 \bar{K}^0 | (\Delta s = 2)_{LL} | 0 \rangle$, $p_K \cdot p_{\bar{K}} = -m^2$. Both the original $K^0 - \bar{K}^0$ amplitude and the crossed amplitude are then computed at rest on the lattice for various values of m, and the γ' term is extracted by a fit to the data. Finally, with the assumption $\gamma \simeq \gamma'$ (see below for a critique), the order m^2 term in the continuum ampli-

> Bernard & A.S. Lattice '88

Precocious signs of BeyondA.Soni 16

Chiral Symmetery & fine tuning

Accurate evaluation of O_{LL} requires precise knowledge of C's -> SEARCHING FOR A NEEDLE IN A HAYSTACK

EXACT CHIRAL SYMMETRY ON THE LATTICE

Conventional fermions do not preserve chiral-flavor symmetry on the lattice (Nielsen - Ninomiya Theorem) $\Rightarrow \Delta S = 1, \Delta I = 1/2$ case mixing with lower dim. (power-divergent) operators & or mixing of 4-quark operators with wrong chirality ones makes lattice study of $K - \pi$ physics virtually impossible.

Domain Wall Fermions (Kaplan, Shamir, Narayanan and Neuberger)

Practical viability of DWF for QCD demonstrated (96-97) Tom Blum & A. S. Chiral symmetry on the lattice, $a \neq 0$! Huge improvement \Rightarrow Now widespread use at BNL and elsewhere

RBC-UKQCD 2+1 dynamical DWQ,hep-ph/0702042

 $B_K^{\overline{\text{MS}}}(2 \text{ GeV}) = 0.524(10)(28)$

Precocious signs of BeyondA.Soni

PRL Jan25,08

New era in lattice accuracy

- Widespread use of chiral fermions

 (i.e. Domain wall or overlap) : respects
 important symmetries of the continuum
 theory.
- Dynamical (2+1) gauge configurations (no longer quenched)
- Use of SU(2)XSU(2)ChPT for chiral extrapolations (pioneered by RBC-UKQCD, hep-ph/0702042....):INCREASED PRECISION

Brief (~25 years) History of B_K

, ~'83 DGH use K⁺ lifetime + LOChPT + SU(3)-> B_K~0.33... no error estimate, no scale dependence....

~'84 Lattice method for WME born...many attempts & improvements for B_{κ} evaluations

~'98 JLQCDstaggered B_K (2GeV)= 0.628(42)quenched(~110). ~'97 1st B_K with DWQ(T.Blum&A.S),0.628(47) quenched. ~'01 RBC B_K with DWQ, quenched=0.532(11) quenched ~'05 RBC, nf=2, dyn. DWQ, B_K =0.563(21)(39)(30) ~'06 Gimnez et al (HPQCD; stagg.) 2+1, B_K =0.618(18)(19)(30)(130) ~07, RBC-UKQCD DWQ 2+10.524(10)(28) DWQ lower B_K -> requiring larger CKM-phase ~'08 Target 2+1 dyn. DWQ, B_K with total error 5%

Emerging signs of New Physics

I. A tale of two numbers

Precocious signs of BeyondA.Soni
Status('07) of fits to the UT

- CKMFitter group
 J.Charles et alhep-ph/0406184
- UTfit group
 M. Bona et al hep-ph/0606167
- E.Lunghi +A.S,arXiV.0707.0212
- Direct measurement(gold-plated)
 BELLE + BABAR (HFAG)

Table 1: Inputs that we use in the unitarity triangle fit.

Contrast '01 vs. '07 inputs:Drive for precision pays off

• '01 fit:

'07 fit:

Lunghi+AS,arXiv.0707.0212

Figure 1: Unitarity triangle fit in the SM. The constraints from $|V_{ub}/V_{cb}|$, ε_K , $\Delta M_{B_s}/\Delta M_{B_d}$ are included in the fit; the region allowed by $a_{\psi K}$ is superimposed.

Continuing saga of Vub

- For past 2 years or so exclusive & inclusive ~small discrepancy:
- Exc ~ (3.7 +-.2+-.5)X10⁻³
- Inc ~ (4.3 +-.2+-.3)X10⁻³
- More recently (LP'07) Neubert suggests source is m_b extraction from b s gamma; disregarding that m_b shows incl. Vub quite consistent i.e. 3.98+-.15+-.30 X10⁻³
- -> Let's try NOT use Vub

Leave out V_{ub} Sin 2 β = 0.84+-.06

Unitarity triangle fit in the SM. The solid contour is obtained using the constraints $\Delta M_{B_s}/\Delta M_{B_d}$ and $|V_{ub}/V_{cb}|$. The dashed contour shows the effect of excluding $|V_{ub}/V_{cb}|$ fit. The region allowed by $a_{\psi K}$ is superimposed.

Summary on 2 numbers

II. A tale of four numbers

Tantalizing (possible) signs of a BSM-CP-odd phase

Grossman & Worah PLB'97; London and A.S. PLB'97

BeyondA.Soni

,

47

TABLE I: Some expectations for ΔS in the cleanest modes.

Mode	QCDF+FSI [20, 21]	QCDF [23]	QCDF [24]	SCET $[25]$
$\eta' K^0$	$0.00^{+0.00}_{-0.04}$	0.01 ± 0.01	0.01 ± 0.02	-0.019 ± 0.009
				-0.010 ± 0.001
ϕK^0	$0.03\substack{+0.01 \\ -0.04}$	0.02 ± 0.01	0.02 ± 0.01	
$K_S K_S K^0$	$0.02^{+0.00}_{-0.04}$			

CLEANEST MODES

Although, at the moment it is not a conclusive effect, it may well become a serious blunder on the part of our community to ignore it! We can try learn some lessons from history.

It is extremely important to understand that basically it is a very good test of the SM and it should be followed vigorously to a decisive conclusion ASAP.

FIG. 15. Experimental cross sections at two energies compared with a simple $1/m^5$ continuum.

Christenson, Hicks, Lederman, Limon, Pope & Zavattini PRD 8,2016 '72

OBSERVATION OF MUON PAIRS IN HIGH-ENERGY HADRON...

mass range of 3-5 GeV/ c^2 , there is a distinct excess of the observed cross section over the reference curve. If this excess is assumed (certainly not required) to be the production of a resolutionbroadened resonance, the cross-section-branching-ratio production σB would be approximately 6×10^{-35} cm², subject to the cross-section uncertainties discussed above. Alternatively the excess may be interpreted as merely a departure from the overly simplistic (and arbitrarily normalized) $1/m^5$ dependence. In this regard, we should remark that there may be two entirely different processes represented here: a low- Q^2 part which has to do with vector mesons, tail of the ρ , bremsstrahlung, etc., and a core yield with a slower mass dependence, which may be relevant to the scaling argument discussed below.

8

The "heavy photon" pole that has been postulated³² to remove divergence difficulties in quancles produced in the initial proton-uranium collision. In principle, these secondary particles could also create muon pairs. In this case, the observed spectrum would represent the inseparable product of the spectrum of the secondary particle and its own yield of muon pairs. In exploratory research of this kind this disadvantage is largely offset by the fact that the variety of initial states provides a more complete exploration of dimuon production in hadron collisions.

2. Real Photons

Real photons produced in the target (presumably from the decay of neutral pions) yield muon pairs by Bethe-Heitler or Compton processes. Estimates were made for the photon flux on the basis of pion-production models,^{27,28} and this method of calculating the flux was checked against the experimental data of Fidecaro *et al.*³³ The argument

2029

Sensitivity to new CP phases

Estimated error in the measurement of time dependent CP violation

Discovery region with 50 ab-1

So far 3 numbers

- I) Expt [ε_K, B-mixing, b->uev...] + Lattice WME
 -> sin2β_{SM} =0.78+-.04
- II)BF measurements [B -> "ψ" K_S]=0.674+-0.026
- III) BF measurements [B-> (φ, η',3) K_S]=0.57+ .06
- -> Deviations 2.2(I-II) 3(I-III) sigmas

Last but quite significant

Central Character: Penguin graph

PULL TABLE:Report Card on the health of the SM('07)

Lunghi+AS arXiV.0707 0212

Observable	Experiment	SM	Pull
$\mathcal{B}(B \to X_s \gamma) \times 10^4$	3.55 ± 0.26	2.98 ± 0.26	+1.6
$\mathcal{B}(B \to \tau \nu_{\tau}) \times 10^4$	1.31 ± 0.48	0.85 ± 0.13	+0.9
$\Delta m_{B_s} (\mathrm{ps}^{-1})$	17.77 ± 0.12	18.6 ± 2.3	-0.4
$a_{\psi K}$	0.675 ± 0.026	0.78 ± 0.04	-2.0
$a_{\phi K}$	0.39 ± 0.18	0.80 ± 0.04	-2.2
$a_{\eta'K}$	0.61 ± 0.07	0.79 ± 0.04	-2.0
$a_{K_sK_sK_s}$	0.51 ± 0.21	0.80 ± 0.04	-1.3
$a_{(\phi K + \eta' K + KKK)}$	0.57 ± 0.06		-2.9
$a_{(\phi K + \eta' K + KKK + \psi K)}$	0.66 ± 0.02		-2.6
$[a_{s\bar{s}s}]_{naive average}$	0.52 ± 0.05		-3.7
$\Delta \Gamma_s / \Gamma_s$	0.27 ± 0.08	0.147 ± 0.060	+1.2
ΔA_{CP}	0.144 ± 0.029	0.025 ± 0.015	+3.6
$a_{\mu} \times 10^{11}$	1.16592080(63)	1.16591785(61)	+3.4
$A_{fb}^{0,b}$	0.0992 ± 0.0016	0.1038	-2.9
$ V_{ub} \times 10^3$	4.31 ± 0.30	3.44 ± 0.16	+2.6

57

Summary so far

- The CKM-paradigm of CP violation accounts for the observed CP patterns to an accuracy of about 15%!
- Remarkably in the past few years several B-factories results exhibit 2 -3 σ deviations from the SM-CKM paradigm!!

Some other notable effects

$B \rightarrow X_s \gamma$ branching fraction

Many NLO SM calculations — theory error?

Mikihiko Nakao @ CKM06; c also Matthias Neubert

$B \rightarrow X_s \gamma$ branching fraction

Mikihiko Nakao @ CKM06 ; c also Matthias Neubert

Direct CP asymmetry

Mikihiko Nakao @ CKM06

Honest answer &

- Don't really know (too many possibilities...)
- But theoretically the most interesting possibility is that we may be witnessing Dawning of the age of

"Warped Quantum Flavordynamics"

General characteristics of implied NP

- At least one new CP-odd (largish) phase...should have interesting effects in e.g.
- New particle(s) with

 Numerous candidates: charged Higgs, heavier (4th family?) quarks, Z', KK/SUSYpartners.....

Figure 1: Warped geometry with flavor from fermion localization. The Higgs field resides on the TeV-brane. The size of the extra dimension is $\pi r_c \sim M_P^{-1}$.

Simultaneous resolution to hierarchy and flavor puzzles

Numerous other possibilities

- 1)2nd Higgs doublet...e.g. T2HDM
- 2) another (4th) generation
- 3) Z'
- 4) SUSY

Revival of 4th Generation!

- Who needs it? May facilitate DEWSB
- Recall: 1) The Fourth family of quarks and leptons. Proceedings, 1st International Symposium, Santa Monica, USA, February 26-28, 1987.
 <u>D.B. Cline, (ed.)</u>, <u>A. Soni, (ed.)</u> (<u>UCLA</u>) . 1987.
 New York, USA: Acad. Sci. (1987) 365 p. (Annals of the New York Academy of Sciences, 518).
- 2) The fourth family of quarks and leptons. Proceedings, 2nd International Symposium, Santa Monica, USA, February 23-25, 1989.
 <u>D.B. Cline, (ed.)</u>, <u>A. Soni, (ed.)</u> (<u>UCLA</u>) . 1989.
 New York, USA: Acad. Sci. (1989) 500 p. (Annals of the New York Academy of Sciences, 578)
- Difficulties with precision tests ? May not be an obstacle (see Kribs, Tait et al)
- Additional CP-odd phases...mostly small effects but can have enhanced EWP can give rise to non-vanishing ΔS and $\Delta A_{K\pi}$ Important Implications for B_S especially Sin2 β_s may be >> 1-2 degrees (which is the prediction in SM)
- Would be great news for LHCb and possibly for Tevatron as studies of TDCP &/or angular correlations in B_s ->ψη' (Φ); D_s ^(*) D_s ^(*) could reveal this

Fourth Generation CP Violation Effect on $B \to K\pi$, ϕK and ρK in NLO PQCD.

1 0.8 0.8 $S_{
ho^{0}~{
m K}_{
m S}}$ $S_{\phi K_{s}}$ 0.6 0.6 0.4 0.4 0.2 0.2 0 0 180 240 300 360 60 60 180 240 300 360 120 120 0 0 $\phi_{\mathtt{sb}}$ $\phi_{\mathtt{sb}}$

Wei-Shu Hou¹, Hsiang-nan Li^{2,3}, Satoshi Mishima⁴, and Makiko Nagashima⁵

B-Factory Signals for a WED (Agashe,Perez,Soni,hepph/0406101(PRL);0408134 (PRD)

- RS with a WARPED EXTRA DIMENSION (WED) provides an elegant solution to the HP
- In this framework, due to warped higherdimensional spacetime, the mass scales (i.e. flavors) in an effective 4D description depend on location in ED. Thus, e.g. the light fermions are localized near the Plank brane where the effective cut-off is much higher than TeV so that FCNC's from HDO are greatly suppressed.. The top guark, on the other hand is localized on the TeV brane so that it gets a large 4D top Yukawa coupling. Precocious signs of 70

Key features of WED

- <u>Amielorating the Flavor Problem</u>. This provides an understanding of hierarchy of fermion masses w/o hierarchies in fundamental 5D params. Thus "solving" the SM flavor problem.
- Flavor violations Most flavor-violating effects arise due to the violation of RS-GIM mechanism by the large top mass.
- This originates from the fact that (t,b)_L is localized on the TeV brane.

Contrasting B-Factory Signals from WED with those from SM

Recent warped models of hierarchy & flavor requiring further study for experimental implications

- Fitzpatrick, Perez and Randall, arXiV. 0710.1869
- Davoudiasl, Perez and Soni, arXiV: 0802.0203 (LRS@LHC)

Two Higgs Doublet Models with Natural Flavor Conservation

The charged Higgs boson interactions with the quark sector are governed by the Lagrangian

$$\mathcal{L} = \frac{g}{2\sqrt{2}M_W} H^{\pm} \left[V_{ij} m_{u_i} A_u \bar{u}_i (1-\gamma_5) d_j + V_{ij} m_{d_j} A_d \bar{u}_i (1+\gamma_5) d_j \right] + h.c. \,,$$

where g is the usual SU(2) coupling constant and V_{ij} represents the appropriate CKM element. In model I, $A_u = \cot \beta$ and $A_d = -\cot \beta$, while in model II, $A_u = \cot \beta$ and $A_d = -\cot \beta$, while in model II, $A_u = \cot \beta$ and $A_d = \tan \beta$, where $\tan \beta \equiv v_2/v_1$ is the ratio of vev

Part of SUSY

T2HDM: 2HiggsDM for the top quark

[see Das,Kao('96);Kirers,Wu,AS('99)...]

- 2nd doublet couples only to top (1st doublet
 - to all else), so that with $V_2/V_1 >>1$, natural

way to get a very heavy top T2HDM Possibly disproves SUSY?

$\mathcal{L}_{Y} = -\bar{L}_{L}\phi_{1}El_{R} - \bar{Q}_{L}\phi_{1}Fd_{R} - \bar{Q}_{L}\tilde{\phi}_{1}G\mathbf{1}^{(1)}u_{R}$ $-\bar{Q}_{L}\tilde{\phi}_{2}G\mathbf{1}^{(2)}u_{R} + \text{H.c.},$

Here ϕ_1 are the two Higgs doublets; E, F and G are 3 X 3 Yukawa matrices giving masses respectively to the charged letptons, the down and up type quarks; $\mathbf{I}^{(1)} \equiv diag(1,1,0)$ and $\mathbf{I}^{(2)} \equiv diag(0,0,1)$ are the two orthogonal projectors onto the 1st two and third family respectively. Q_L and L_L are the usual left-handed quark and lepton doublets.

- (b) T2HDM should be viewed as LEET that parametrizes through the yukawa interactions some high energy dynamics which generates the top quark mass as well as the weak scale...
- (c) In addition to largish $tan\beta$ the model has restrictive FCNC (since it belongs to type III) amongst only the up-type

H⁺⁻ phenomenology in T2HDM

H^{+-} interactions with U_R and D_L

$$\frac{g_2 m_c \tan \beta}{\sqrt{2} m_W} \begin{pmatrix} \xi'^* V_{td} & \xi'^* V_{ts} & \xi'^* V_{tb} \\ \xi^* V_{td} - V_{cd} & \xi^* V_{ts} - V_{cs} & \xi^* V_{tb} - V_{cb} \\ V_{td} \cot^2 \beta / \epsilon_{ct} + \epsilon_{ct} \xi V_{cd} & V_{ts} \cot^2 \beta / \epsilon_{ct} + \epsilon_{ct} \xi V_{cs} & V_{tb} \cot^2 \beta / \epsilon_{ct} \end{pmatrix}$$

$$m_{H^{\pm}}, \, \tan \beta, \, \xi = |\xi| e^{i\varphi_{\xi}}$$

$$|V_{ub}/V_{cb}|, \Delta M_{B_s}/\Delta M_{B_d}, a_{\psi K}, \varepsilon_K, B \to X_s \gamma, B \to \tau \nu$$

Precocious signs of BeyondA.Soni

Figure 5: Plot a. $m_{H^{\pm}}$ dependence of the branching ratio $B \to X_s \gamma$ in units of 10⁻⁴. Solid, dashed, dotted and dotted-dashed lines correspond to $(\tan \beta, \xi) = (10, 0), (50, 0), (50, 1)$ and (50, -1), respectively. There is no appreciable dependence on ξ' . The two horizontal dashed lines are the experimental 68%C.L. allowed region. The blue region represents the theory uncertainty associated to the solid line (similar bands can be drown for the other cases). Plot b. Portion of the $(\tan \beta, m_{H^{\pm}})$ plane excluded at 68%C.L. by the $B \to X_s \gamma$ measurement. The shaded area corresponds to $\xi = 0$. The dotted and dashed lines show how this region changes for $\xi = 1$ and -1, respectively.

> Precocious signs of BeyondA.Soni

Figure 10: Plot a. $m_{H^{\pm}}$ dependence of the T2HDM contributions to $\Delta m_{B_{(s)}}/\Delta m_{B_{(d)}}$. See the caption in Fig. 9. Plot b. Excluded region in the $(\varphi_{\xi}, m_{H^{\pm}})$ plane. The solid and dashed contours correspond to tan $\beta = 30$ and 50, respectively.

DirectCP violation in Radiative B decays in and beyond the SM

Kiers, soni and Wu hep-ph/0006280 (some input from refs. below)

Model	$A_{CP}^{B o X_{S} \gamma}(\%)$	$A_{CP}^{B o X_d \gamma}(\%)$
SM	0.6	-16
2HDM (Model II)	pprox 0.6	≈ -16
3HDM	-3 to +3	-20 to +20
T2HDM	pprox 0 to +0.6	pprox -16 to $+4$
Supergravity[*]	pprox -10 to +10	-(5 - 45) and (2
SUSY with squark mixing[+]	pprox -15 to +15	
SUSY with R-parity violation[$+*$]	pprox -17 to +17	

* : T. Goto et al hep-ph/9812369; M. Aoki et al, hep-ph/9811251. + : C.-K Chua et al hep-ph/9808431; Y.G.Kim et al NPB544,64(99); Kagan and Neubert,hep-ph/9803368.

Can BF further stengthen these signs

- After all said & done expect from BF ~2/ab
- Need final #s for TDCP

Summary & Outlook

- Asym. B factories + Lattice : milestone in our understandig of CPV-> KM phase is the dominant contributor to observed CP, NP effects subdominant.
- Search for BSM-CP-odd phase imposes greater demands of precision on expt. & on theory
- As BF accumulated more data, ΔS , $\Delta A_{K\pi}$ tests of the CKM-paradigm became extremely tantalizing with ~2.5 -3.5 σ deviations
- Urgent need for more accurate CKM physics from lattice
- Given that such effects occur quite naturally in most BSMs the expt. situation needs to be clarified at the highest priority.

-> SB(F)F should see an exciting -era!:

New CP-odd phase (SBF); new particles 300GeV—few TeV...(LHC). Importance of interplay between flavor & collider physics even in the LHC-era ...