Status of G4superb

Atsuko Kibayashi March 18, 2008 Open meeting for protocollaboration

proto-collab. meeting A.Kibayashi

Belle Upgrade

Motivation

- Design decision of SuperBelle detector in March 2009
- Design being confirmed/optimized by
 - Tuned for SuperBelle detector, existing
 - Geant3 based fast simulator
 - Geant3 based full simulator
 - Tools; e.g., TRACKERR
- Needed: full simulator for SuperBelle
 Geant4

For more info., see individual detector talks...

Session Geant4.5 (3/18) PXD (3/19)

PXD (H. Hoedlmoser)

- Standalone almost complete
 - Geometry w/ support structure
 - Hits & digits produced, including
 - Drift time
 - Lateral diffusion
 - Lorentz angle
 - Pixel threshold
 - Channel noise
 - Cluster produced
 - Needs to be integrated into belle library

Tracking/vertexing performance (3/20)

SVD

(A.Kibayashi)

- Status
 - Very basic
 - Geometry: Si sensors
 - Digitization: drift time & diffusion
 - Clustering & tracking done
- ToDo
 - Support structure
 - Cooling
 - Digitization
 - Lorentz angle
 - Capacitance

• • •

collab. meeting A.Kibayashi

Vertexing

Issues

w/ Geant4

- Vertex resolution
 - Position of innermost layer (r=15 mm -> 10 mm)
 - Pixel detector
- Vertex efficiency for Ks
 - Larger radial volume
 - Chip-on-sensor?
- Background tolerance
 - Use of APV25

Study the effect of slanted layers, Optimize the slant angles

Optimize the pitch sizes

Study the effect of material; chip on sensor + cooling.

Tracking

CDC (central drift chamber)

- Pt resolution
 - Longer lever arm to improve momentum resolution
- dE/dx
 - Larger radial volume (752 \rightarrow 978mm)
- Background tolerance
 - Smaller cell size
 - Innermost 12 mm, 64 cells \rightarrow 8 mm, 160 cells

proto-collab. meeting A.Kibayashi

CDC (H.Ozaki)

- Geometry done
 - Inner/outer radius can be adjusted to SVD/PID
- Hits & digits done
- Fine tuning on tracking ongoing
- dE/dx soon to be released

	Present	Future
Radius of inner boundary (mm)	77	160
Radius of outer boundary (mm)	880	1140
Radius of inner most sense wire (mm)	88	172
Radius of outer most sense wire (mm)	863	1120
Number of layers	50	58
Number of total sense wires	8400	15104
Effective radius of dE/dx measurement (mm)	752	978
Gas	He-C ₂ H ₆	He-C ₂ H ₆
Diameter of sense wire (µm)	30	30

Session Geant4.2 (3/18) TOP (3/20)

TOP - time of propagation (K.Inami)

- Three read out type
- Basically working well
 - Correct light propagation and TDC distribution
 - Proper ring image reconstruction
 - Output likelihood as expected
- To Do
 - Check performance for several incident momenta and angles

TOP for Barrel PID possible options

3 readout type

Focusing type

Focus Mirror

Study w	/ Geant3	Option 0 3 readout + multi-alkali MCP-PMT	Option 1 Focusing + multi-alkali MCP-PMT	Option 2 Focusing + GaAsP MCP- PMT
	$4 \text{GeV K}/\pi$	2.8σ	$2.5\sigma \rightarrow 4.0\sigma$	4.2σ
	comment	Principle established	Correction Eff. to be improved	GaAsP under development

For options 1 & 2, Geant4 needs:

Focusing mirrors included, new reconstruction method needed for complicated ring image

Session Geant4.1 (3/18) A-RICH (3/20)

RICH - aerogel RICH for endcap PID

 $n_1 n_2$

Aerogel

(R.Petotnik)

- Basic geometry done
 - Aerogel
 - Photon detector: HAPD
 - Support structure not yet
- Hits & digits done
 - **Processes included**
 - Cherenkov photon generation
 - Rayleigh scattering in aerogel
 - **Optical photon transport**
- Reconstruction
 - Standalone working well
 - Integrate into belle lib

ECL - electromagnetic calorimeter (P.Krokovny)

issues

- Endcap
 - Background
 - Faster crystal: CsI(Tl) τ~1μs
 → pure CsI τ~30ns
 - Small light yield UV
 - PMT
- Barrel
 - Background, not as bad as endcaps
 - Waveform sampling & fitting
- Smaller material inside ECL

G4 status

- Rough geometry done
- Reconstruction OK
 - Clusters
- Study being done w/ backgrounds

w/ Geant4 Study the effect of pure/partial CsI

Session Geant4.3 (3/18) 2 KLM talks (3/20) proto-collab. meeting

KLM (L.Piilonen)

- Resistive plate counter (RPC) option in Barrel & Endcap
 - Detailed geometry already in
- Geant4 output
 - Raw data: hit strip info
 - Recon: k long id info. ready

• ToDo

- Muid (software complications)
- Include the tabulated RPC detection efficiencies in generating the RPC hits

From Geant3 based optimization study...

Layer	Barrel(F)	E-cap(F)	E-cap(B)	
0	3.6	2.4	3.4	
1	2.3	2.4	2.9	
2	1.6	2.4	2.8	
3	1.1	2.0	2.8	
4	0.7	2.2	2.8	
5	0.6	2.7	2.9	
6	0.6	2.7	1.5	
7	0.4	3.3	2.6	
8	0.7	3.1	3.0	
9	0.5	3.9	2.8	
10	0.3	4.7	3.5	
11	0.4	5.3	3.0	
12	0.4			- (
13	0.4	L=5	$\times 10^{35}$ /cn	n^2/s
14	0.5			

• Endcaps

Killed by high rate of background

A.Kibayashi

Scintillator + GAPD (SiPM)

instro8, Novosibirsk

- T recover = $1s \rightarrow 500ns$
- Radiation hardness,
 OK for >5 years
- Barrel
 - background will be OK

PRC in avalanche mode?

w/ present RPC Background in Hz/cm² 1sec to recover, $\epsilon = 50\% @ 1Hz/cm^2$ $\epsilon = 0\% @ 2Hz/cm^2$

For more study w/ Geant4, Add Scintillator +GAPD option in the Endcap

Session Geant4.3 (3/18)

G4EXT - track extrapolation (L.Piilonen)

- Charged track propagation from the end point of CDC
- Store position, momentum, and covariance matrix at the entrance/ext of selected volumes
- Basically done
 - A few problems: conflicts w/ g4 simulation module
 - Two separate jobs required currently, before/after g4ext
- Outer detectors can now use track info.

Summary

- 1st set of simulation data soon to be released Very basic version
 Still needs
- - Fine geometry including support structure, cooling, readout electronics...
 - Materials under R&D
 - Fine tuning of the reconstruction software

• Studies

- Space optimization between sub-detectors
 Fine tuning/optimization of each sub-detector
 Backgrounds

- Hermiticity
- . . .
- Join us!

proto-collab. meeting A.Kibayashi

backups

Sample scripts

/belle/belle/b20080316_1250/docsrc/examples /g4superb

instro8, Novosibirsk A.Kibayashi

SVD - Material Effect on Vertex Resolutions Study done by Geant3 (T.Hara)

	π ⁺ π ⁻ (31mm)	J/ψK _S (36mm)	D ⁺ D ⁻ (43mm)	K*(K _S π ⁰)γ (128mm)
$2 \times \rho$ for SVD,CDC	6%	11%	19%	
2×ρ for SVD	6%	11%	21%	
2×ρ for SVD lyr1,2	6%	11%	19%	
2×ρ for SVD lyr3,4	0%	0%	0%	
2×ρ for SVD lyr3,4 + cooling tube	0%	0%	0%	7%

Degradation in resolutions, No change

No problem to increase the material in outer layers for 'normal' vertex reconstruction
Dilutes the merit to have larger volume for K_s

SFD (K.F.Chen)

Super Forward Detector

Minimum hypothesis & target: A SFD for improving detector acceptance. (No direct contribution to main analysis, but as a veto detector) Reject the prompt tracks from IP for the sBelle full-recon. analysis. However, we are actually out of space:

Geant4 Module

Regardless of the space, we prepared a g4superb-sfd module. (as a copy of g4superb-pxd...)

Assuming silicon pixel detector with large cells: 2mm x 2mm. Preliminary geometry (sensors only at this moment...):

Coverage: FW (5.3°–11.1°), BW(165.1°–172.7°) Produce two panther tables: DATSFD_TRUEHIT, DATSFD_CELI

BNM2008

Preliminary Effects on $B \rightarrow K^{(*)} \nu \nu$

Veto the events with one or more track(s) reconstructed: No track(s) reconstructed

1 IP

Calculate the

at r- ϕ plane

closest approach

Sraight line track finding

More studies are required to have a conclusive result: e.g. material in front of the detector, supporting structure, shielding, etc.

page. 17

 ${\sim}30\%$ of backgrounds from B decays removed by rejecting the charged tracks pointing From the IP