
Hits and Digits

Geant4 introduction
2008/03/18

Nobu Katayama
KEK

Simulating the detector
response

• Create hits in the sensitive detector
– Record the information of physical interaction

of a track in the sensitive region of the
detector

• Hits should also be generated for the
backgrounds

• Convert the hits information to “signal”
from the sensors

• “Digitize” the information simulating the
read-out electronics and DAQ

Geant4 now has easy to use scorers.
We will investigate if we can make use of them.

Sensitive detector and Hit
• Each Logical Volume can have a pointer to a

sensitive detector.
– Then this volume becomes sensitive

• Hit is a snapshot of the physical interaction of a
track or an accumulation of interactions of tracks
in the sensitive region of your detector

• A sensitive detector creates hit(s) using the
information given in G4Step object. The user has
to provide his/her own implementation of the
detector response.

• Hit objects, which are still the user’s class objects,
are collected in a G4Event object at the end of an
event

B4SensitiveDetectorBase

• inherits from G4VSensitiveDetector
• is a placeholder for (multiple) Hits

collections
• has a pointer to DetBase
• The user should derive your own

SensitiveDetector class from this class
and implement CreateCollection, Initialize,
ProcessHits and AddbgOne functions

Step, StepPoint and Touchable
• When a track trajectory goes through a sensitive

detector, It invokes
SensitiveDetector::ProcessHits(G4Step,
G4TouchableHistory)

• G4Step has PreStepPoint from which
– Position in world coordinate system
– Material
– Track etc.

• G4TouchableHistory is a vector of information for
each geometrical hierarchy with
– copy number
– transformation/rotation to its mother etc.

B4CDC_SensitiveDetector::Process
Hits(G4Step * aStep,

G4TouchableHistory *) {

User Hits class
• Hit is a user-defined class derived from G4VHit
• You can store various types information by implementing your own

concrete Hit class. For example:
– Position and time of the step
– Momentum and energy of the track
– Energy deposition of the step
– Geometrical information
– or any combination of above

• Hit objects of a concrete hit class must be stored in a dedicated
collection which is instantiated from G4THitsCollection template
class

• The collection will be associated to a G4Event object via
G4HCofThisEvent

• Hits collections are accessible
– through G4Event at the end of event
– through G4SDManager during processing an event

B4CDC_Hit

Digitizer and Digit

• Digit represents a detector output (e.g. ADC/TDC
count, trigger signal, etc.)

• Digit is created with one or more hits and/or other
digits by a user's concrete implementation derived
from G4VDigitizerModule. (B4DigitizerBase for Belle)

• In contradiction to the sensitive detector which is
accessed at tracking time automatically, the digitize()
method of each G4VDigitizerModule must be
explicitly invoked by the user’s code (e.g. at
EventAction)

B4DigitizerBase

• inherits from G4VDigitizerModule
• is a placeholder for (multiple) digiCollections
• has a pointer to B4SensitiveDetectorBase
• The user should derive your own Digitizer

class from this class and implement Digitize
and Store functions

• Digitizers are created (for now) in
B4EventAction::BeginOfEventAction and
Digitize/Store are called from
EndOfEventAction

B4CDC_Digitizer::Digitize() {
const B4DetBase &base(*(sd()->getDetBase()));

const B4CDC_HitsCollection *hcdc = getHc<B4CDC_HitsCollection>(base);
if(hcdc) {
m_digiCollection.clear();
m_digiCollection.push_back(new B4CDC_DigiCollection(base.DGname(),
collectionName[0]));
std::sort(hcdc->GetVector()->begin(), hcdc->GetVector()->end(),

B4CDC_Hit::sort_functor_cmp_hits());
const B4CDC_Hit *lastHit(NULL);
B4CDC_Digi *dg(NULL);
for(std::vector<B4CDC_Hit*>::const_iterator it=hcdc->GetVector()->begin();

it != hcdc->GetVector()->end(); ++it) {
if(lastHit==NULL || !(*it)->SameWire(*lastHit)) {
dg = new B4CDC_Digi(**it);
getDc<B4CDC_DigiCollection> ()->insert(dg);

} else if(lastHit!=NULL && (*it)->SameWire(*lastHit) && dg!=NULL) {
dg->SetAdc(5678+dg->GetAdc());

}
lastHit = *it;
}
StoreDigiCollection(m_digiCollection[0]);

}

User Digi class
• Ideally the digi class should have the same

information as real detector readout such as
ADC/TDC information with smearing,
electronics noise, backgrounds, non linearity
simulated, through pipelined electronics/time
window and sparsification and other software
in the read-out systems

• In reality we do as detailed as we can at any
given time in the development in order to
satisfy the need for the particular simulation
jobs
– For example, in CDC, smearing, efficiency,

multiple hits in a cell are simulated at this moment

Writing them out

• For now we use panther format
– write tdf file if necessary or fill the existing

tables
• For reading and writing panther table, see

– http://belle.kek.jp/group/software/slides/Panth
er/soft_PANTHER.html

• For now we might use hits information in
the reconstruction software as “digitize”
and “undigitize” may not be important for
the kind of things we are now looking at

http://belle.kek.jp/group/software/slides/Panther/soft_PANTHER.html
http://belle.kek.jp/group/software/slides/Panther/soft_PANTHER.html

Summary

• I think you can
– Start with what you need
– Complete the chain (simulation →

reconstruction → physics)
– Refine as necessary

• If you would like a different approach,
please let us know

	Hits and Digits
	Simulating the detector response
	Sensitive detector and Hit
	B4SensitiveDetectorBase
	Step, StepPoint and Touchable
	B4CDC_SensitiveDetector::ProcessHits(G4Step * aStep, G4TouchableHistory *) {
	User Hits class
	B4CDC_Hit
	Digitizer and Digit
	B4DigitizerBase
	B4CDC_Digitizer::Digitize() {
	User Digi class
	Writing them out
	Summary

