Hits and Digits

Geant4 introduction
2008/03/18
Nobu Katayama
KEK

Simulating the detector

response

e Create hits In the sensitive detector

— Record the information of physical interaction
of a track in the sensitive region of the
detector

* Hits should also be generated for the
backgrounds

e Convert the hits information to “signal”
from the sensors

e “Digitize” the information simulating the
read-out electronics and DAQ

Concrete class provided by 64

CIaSS d iag ra m Abstract base class provided by G4

Template class provided by 64

G4LogicalVolume G4Event ;
User's class
has | .
0.1 G4HCof ThisEvent
G4VSensitiveDetector \ -
: G4VHitsCollection
Lt T ¥~ G4THitsCollection
G4MultiFunctionalDetector \
\ userSensitive Detector i
n G4VHit
n
userHitsCollection
Geant4 now has easy to use scorers. or userHitsMap
We will investigate if we can make use of them.
n
userHit

Scoring Il - M.Asai (SLAC) 6

Sensitive detector and Hit

Each Logical Volume can have a pointer to a
sensitive detector.

— Then this volume becomes sensitive

Hit is a snapshot of the physical interaction of a
track or an accumulation of interactions of tracks
In the sensitive region of your detector

A sensitive detector creates hit(s) using the
iInformation given in G4Step object. The user has
to provide his/her own implementation of the
detector response.

Hit objects, which are still the user’s class objects,
are collected in a G4Event object at the end of an
event

B4SensitiveDetectorBase

Inherits from G4VSensitiveDetector

IS a placeholder for (multiple) Hits
collections

has a pointer to DetBase

The user should derive your own
SensitiveDetector class from this class
and implement CreateCollection, Initialize,
ProcessHits and AddbgOne functions

Step, StepPoint and Touchable

 When a track trajectory goes through a sensitive
detector, It invokes

SensitiveDetector::ProcessHits(G4Step,
G4TouchableHistory)
o G4Step has PreStepPoint from which

— Position in world coordinate system
— Material

— Track etc.
 G4TouchableHistory is a vector of information for
each geometrical hierarchy with
— COpy number
— transformation/rotation to its mother etc.

BACDC SensitiveDetector::Process
Hits(G4Step * aStep,
G4 TouchableHistory *) {

const G4double edep = aStep->GetTotalEnergyDeposit(); Calculate cell IDs

if (edep == 0.) return false;
//...Get step information...

const G4Track & t = * aStep->GetTrack();

const G4double charge = t.GetDefinition()-
»GetPDGCharge();

if (charge == 0.) return false;

const G4VPhysicalVolume & v = * £.GetVolume();

const G4StepPoint & in = * aStep->GetPreStepPoint();
const G45tepPoint & out = * aStep->GetPostStepPoint();
const G4ThreeVector & posin = in.GetPosition();

const G4ThreeVector & posQut = out.GetPosition();
const G4ThreeVector & mom = t.GetMomentum();

const unsigned idin = cdcg.cellld{layerid, posin);
const unsigned idOut = cdcg.cellld(layerld, posQut);
//...Calculate drift length...

const bool magneticField = false;

const B4CDC_Laver & | = cdcg.laver(layerld);

std::vector<unsigned>» wires = Wireld(idIn, idOut,
l.nWires());

for (unsigned i = 0; i < wires.size(); i++) {
const B4CDC_Wire & w = * [[wires[i]];

static const B4CDC *cdc(NULL);
if(NULL==cdc) {
// cdc = dynamic_cast<const B4CDC
*>(B4DetectorConstruction::Instance()->det("cdc"));
cdc = dynamic_cast<const B4CDC *>(getDetBase());

}

double distance = Q;

/[for each cell in phi, calculate the drift distance
// and create hits

B4ACDC_Hit * hit = new B4CDC_Hit(w, distance);
getHcde<B4CDC_HitsCollection>()->insert(hit);

//...Get layer ID...

const unsigned layerld = v.GetCopyNo();

static const B4CDC_GeometryDB *cdcgp(NULL);
cdcgp = &(cdc->geometryDB());

const B4CDC_GeometryDB & cdcg(*cdcgp);

User Hits class

Hit is a user-defined class derived from G4VHit
You can store various types information by implementing your own
concrete Hit class. For example:
— Position and time of the step
— Momentum and energy of the track
— Energy deposition of the step
— Geometrical information
— or any combination of above
Hit objects of a concrete hit class must be stored in a dedicated

collection which is instantiated from G4THitsCollection template
class

The collection will be associated to a G4Event object via
G4HCofThisEvent

Hits collections are accessible
— through G4Event at the end of event
— through G4SDManager during processing an event

B4CDC Hit

class B4CDC_Hit : public G4VHit {
friend class B4CDC_Digi;
public:
B4CDC_Hit(const B4CDC_Wire &, double driftLength);
~B4CDC_Hit() {}
void Print() {}
void Draw() {}
Belle::Panther_ID Store(void) const;

inline void * operator new(size_t);
inline void operator delete(void *aHit);

unsigned _state;
static Belle::Reccde_wirhit_Manager &mgr;
static Belle::Geocdc_wire_Manager &geo_mgr;

b

struct sort_functor_cmp_hits {

bool operator() (const Superb::B4CDC_Hit * const &a,
const Superb::B4CDC_Hit * const &b) const;
b

G4bool SameWire(const B4CDC_Hit &h) const {
return _wire->id() == h._wire->id();

}

// special new/deletes
extern G4Allocator<B4CDC_Hit> B4CDC_HitAllocator;
inline void* B4CDC_Hit::operator new(size_t) {
void *aHit;
aHit = (void*) B4CDC_HitAllocator. MallocSingle();
return aHit;
}
inline void B4CDC_Hit::operator delete(void *aHit) {
B4CDC_HitAllocator.FreeSingle((B4CDC_Hit*) aHit);

}

private;
const B4CDC_Wire * _wire;
const G4double _driftLength;

// G4THitsCollection

typedef G4THitsCollection<Superb::B4CDC_Hit>
B4CDC_HitsCollection;

Digitizer and Digit

* Digit represents a detector output (e.g. ADC/TDC
count, trigger signal, etc.)

« Digit is created with one or more hits and/or other
digits by a user's concrete implementation derived
from G4vDigitizerModule. (B4DigitizerBase for Belle)

* In contradiction to the sensitive detector which is
accessed at tracking time automatically, the digitize()
method of each G4VvDigitizerModule must be
explicitly invoked by the user’s code (e.g. at
EventAction)

B4DigitizerBase

iInherits from G4VDigitizerModule
IS a placeholder for (multiple) digiCollections
has a pointer to B4SensitiveDetectorBase

The user should derive your own Digitizer
class from this class and implement Digitize
and Store functions

Digitizers are created (for now) In
B4EventAction::BeginOfEventAction and
Digitize/Store are called from
EndOfEventAction

B4CDC_Digitizer::Digitize() {

const B4DetBase &base(*(sd()->getDetBase()));

const B4CDC_HitsCollection *hcdc = getHc<B4CDC_HitsCollection>(base);
if(hcdc) {

m_digiCollection.clear();

m_digiCollection.push back(new B4CDC DigiCollection(base.DGname(),

collectionName(Of));
std::sort(hcdc->GetVector()->begin(), hcdc->GetVector()->end(),

B4CDC_Hit::sort_functor_cmp_hits());
const BACDC_Hit *lastHit(NULL);
B4CDC_Digi *dg(NULL);
for(std::vector<B4CDC_Hit*>::const_iterator it=hcdc->GetVector()->begin();
it != hcdc->GetVector()->end(); ++it) {
if(lastHit==NULL || !(*it)->SameWire(*lastHit)) {
dg = new B4CDC_Digi(**it);
getDc<B4CDC_DigiCollection> ()->insert(dg);
} else if(lastHit'=NULL && (*it)->SameWire(*lastHit) && dg!=NULL) {
dg->SetAdc(5678+dg->GetAdc());

}
lastHit = *it;

i
StoreDigiCollection(m_digiCollection[0]);

User Digi class

 |deally the digi class should have the same
Information as real detector readout such as
ADC/TDC information with smearing,
electronics noise, backgrounds, non linearity
simulated, through pipelined electronics/time
window and sparsification and other software

In the read-out systems

 |In reality we do as detailed as we can at any
given time in the development in order to
satisfy the need for the particular simulation
jobs
— For example, in CDC, smearing, efficiency,
multiple hits in a cell are simulated at this moment

Writing them out

 For now we use panther format
— write tdf file if necessary or fill the existing
tables
* For reading and writing panther table, see
— http://belle.kek.]p/group/software/slides/Panth
er/soft PANTHER.html
* For now we might use hits information In
the reconstruction software as “digitize”
and “undigitize” may not be important for
the kind of things we are now looking at

http://belle.kek.jp/group/software/slides/Panther/soft_PANTHER.html
http://belle.kek.jp/group/software/slides/Panther/soft_PANTHER.html

Summary

| think you can
— Start with what you need

— Complete the chain (simulation —
reconstruction — physics)

— Refine as necessary

 If you would like a different approach,
please let us know

	Hits and Digits
	Simulating the detector response
	Sensitive detector and Hit
	B4SensitiveDetectorBase
	Step, StepPoint and Touchable
	B4CDC_SensitiveDetector::ProcessHits(G4Step * aStep, G4TouchableHistory *) {
	User Hits class
	B4CDC_Hit
	Digitizer and Digit
	B4DigitizerBase
	B4CDC_Digitizer::Digitize() {
	User Digi class
	Writing them out
	Summary

