Physics Program at SuperKEKB

Mikihiko Nakao (KEK, IPNS) March 17, 2008 Open meeting for proto-collaboration mikihiko.nakao@kek.jp

SM does not tell much about flavor

- Why three generations?
- What determines the mass and mixing pattern?
- How antimatter disappeared in the universe?

Questions remain unanswered even if SUSY is found at LHC, or even if upgraded KEKB finds new physics...

BUT, step-by-step experimental approach in flavor physics is definitely needed to address these grand questions — hopefully keys are in new physics beyond the SM

Unitarity triangle with and without BSM

MSSM down-type squark mass matrix

Two key measurements

Non-SM !@#\$% from B meson decay

Lepton ?: &| = * violation in τ decay

!@#\$% maybe phase, ?:&|=* maybe flavor, but could be anything else

Or...seven key measurements

- Non-SM CP phase: High precision $b \rightarrow s$ penguin studies
- Charged Higgs: searches in $B^+ \rightarrow \tau^+ \nu$ and $B \rightarrow D^{(*)} \tau^+ \nu$
- Non-SM right-handed current: $B \rightarrow K^* \gamma \text{ CPV}$
- Inclusive measurements: $b \to s\gamma$, $b \to d\gamma$, $b \to s\ell^+\ell^-$ (A_{FB}), V_{ub}
- Loop vs tree: high precision unitarity triangle measurement
- Lepton flavor violation: searches in high statistics τ decays
- NP search in up-quark sector: CPV in *D*-*D* mixing

+ Bonus

- Hunt for new particles: 4-quark states and more?
- Endless list: More rare *B* decays, B_s at $\Upsilon(5S)$, more *D* decays, continuum, $\gamma\gamma$, ISR...
- Jackpot?: anything not thought of yet...

Now it's time to look more closely at the physics strategy

- Today, need more focus on early stage of upgraded KEKB, to maximize physics output with 3 or 5 ab⁻¹
- 10 ab⁻¹ would tell us the direction of Flavor Physics
 Goal of current roadmap
- 50 ab⁻¹ would allow us to study Flavor Physics of BSM towards the systematics/theory limits (not in the roadmap yet)

Assumptions

- Main physics and detector target is for 50 ab⁻¹ with <u>x20 background</u> (to get prepared!)
- Most of the studies have assumed the current Belle detector (it'll be a good assumption)
 - It is indeed a good detector, little room to improve PID (TOP/ARICH) — esp. to reduce fake rate Larger SVD — esp. for K_S^0 vertexing Ultra-small beampipe/pixel — not for the day one Hermeticity — no feasible idea yet to boost it Software — tracking, calibration, ...
 - Other improvements just to cancel beam background (or slightly worse at the moment with ×20 background)
- As for the first stage, the Belle detector would do better! (with ×5 background)

Non-SM CP phase High precision $b \rightarrow s$ penguin studies

Time-dependent CPV measurement

 $A_{CP}(\Delta t) = -\xi_f S \sin(\Delta m \Delta t) + \mathcal{A} \cos(\Delta m \Delta t)$

CPV in tree: the SM reference point

$b \rightarrow s$: a BSM probe

$b \rightarrow s$ CPV: now

Projection

Possible improvements

Reconstructed decay chains (now)

$$\begin{split} \eta'_{\rho\gamma}K_{S}^{+-}, \eta'_{\gamma\gamma}K_{S}^{+-}, \eta'_{3\pi}K_{S}^{+-}, \eta'_{\rho\gamma}K_{S}^{00}, \eta'_{\gamma\gamma}K_{S}^{00}; \eta'_{\gamma\gamma}K_{L}, \eta'_{3\pi}K_{L} \\ (\eta'_{\rho\gamma} \to \rho^{0}\gamma, \eta'_{\gamma\gamma} \to \pi^{+}\pi^{-}\eta(\to \gamma\gamma), \eta'_{3\pi} \to \pi^{+}\pi^{-}\eta(\to \pi^{+}\pi^{-}\pi^{0}) \\ \phi_{+-}K_{S}^{+-}, \phi_{SL}K_{S}^{+-}, \phi_{+-}K_{S}^{00}; \phi_{+-}K_{L} \\ (\phi_{+-} \to K^{+}K^{-}, \phi_{SL} \to K_{S}^{+-}K_{L}) \\ K_{S}^{+-}K_{S}^{+-}K_{S}^{+-}, K_{S}^{+-}K_{S}^{00} \\ (K_{S}^{+-} \to \pi^{+}\pi^{-}, K_{S}^{00} \to \pi^{0}\pi^{0}) \\ \end{split}$$
More modes could be included with more data

- Reconstruction efficiencies
 - Less background with a better PID
- Flavor tag effective efficiencies
 - Kaon id
 - Low-momentum muon id
 - Slow pion from D^{*+}

Efforts should be made to increase every additional 5–10%

Non-SM right-handed current time-dependent $b \rightarrow s$ CPV

Right-handed current

- CPV in SM expected to be $S \sim -\frac{2m_s}{m_b} \sin 2\phi_1 = a$ few % CPV will enhanced in the presence of RH current
- Direct photon helicity measurement: extremely difficult (possible with $\gamma \rightarrow e^+e^-$ conversion with 50+ ab⁻¹)
- s quark helicity is hard to measure (e.g., in $K\pi\pi\gamma$ final state)

Right-handed current in BSM

SUSY in general mixing framework (Foster-Okumura-Roszkowski)

(constraints on $B \rightarrow X_s \gamma$, B_s mixing are taken into account)

 O(1) effect is also possible in left-right symmetric model, warped extra dimesion...

Time dependent CPV in $B \rightarrow K_{S}^{0} \pi^{0} \gamma$

- B vertex from off-IP K_S^0 decay
- K_S^0 has to decay inside the SVD volume

worthwhile enlarging the SVD volume only for this measurement

$B \rightarrow K_S^0 \pi^0 \gamma$ prospects

More modes

Charged Higgs searches in $B^+ \rightarrow \tau^+ \nu$ and $B \rightarrow D^{(*)} \tau^+ \nu$

Charged Higgs

$$r_{H} = \frac{\mathcal{B}(B^{-} \to \tau^{-} \overline{\nu}_{\tau})}{\mathcal{B}_{SM}(B^{-} \to \tau^{-} \overline{\nu}_{\tau})} \neq 1 \quad \Rightarrow \quad m_{H^{+}}/\tan\beta \text{ measurement}$$

- Two-fold ambiguity if $r_H < 1$ solvled with $B \rightarrow D\tau^+ \nu$
- Universality between b-u-H⁺ coupling and b-c-H⁺ coupling (and b-t-H⁺ coupling from LHC)

Similar limit from $B \rightarrow D^{(*)} \tau^+ \nu$

Searches up to $m_{H^+} \sim \text{several 100 GeV}$ for large $\tan \beta$ (need more data for smaller $\tan \beta$)

Similar limit from $B \rightarrow D^{(*)} \tau^+ \nu$

Searches up to $m_{H^+} \sim \text{several 100 GeV}$ for large $\tan \beta$ (need more data for smaller $\tan \beta$)

$$B^+ \to \mu^+ \nu$$

 Full reconstruction is not needed — high efficiency Straightforward analysis — less worry on beam background

 \bullet Yet another universality test $R_{H}^{\tau\nu}$ VS $R_{H}^{\mu\nu}$ — should be equal for the charged Higgs

Inclusive measurements $B \to X_s \gamma, B \to X_s \ell^+ \ell^-$

Charged Higgs would always increase \mathcal{B} Other SUSY contribution could cancel

Belle's 3rd most cited paper

PRL87,251807(2001) **CLEO** (3.29±0.53)x10⁻⁴ $(3.35^{+0.62}_{-0.51}) \times 10^{-4}$ BaBar [**9**1.5 fb⁻¹] PRD72,052004(2005 (3.92±0.57)x10⁻⁴ [81.5 fb⁻¹] BaBar PRL98,022002(2007) (3.91±1.11)x10⁻⁴ [210 fb⁻¹] BaBar LP07 preliminary (2007) Belle (3.69±0.95)x10⁻⁴ [5.8 fb⁻¹] PLB511,151(2001) [140 fb⁻¹] PRL93,061803(2004) (3.50±0.44)x10⁻⁴ (3.55±0.26)x10⁻⁴ **HFAG 2006** hep-ex/0603003 (3.62±0.25)x10⁻⁴ (* simple minded average) Becher Neubert [PRL98,022003(2007)] NNLO Misiak et al [PRL98,022002(2007)] 5 BF($B \rightarrow X_s \gamma$) (10⁻⁴) scaled for E₁ > 1.6 GeV

Treasure box to constrain many BSM scenarios

Experimental $\mathcal B$ is slightly higher than theory

new development in theory: NNLO

New $b \rightarrow s\gamma$ result

$b \rightarrow s \gamma$ prospects

• To lower the E_{γ} cut

1.8 GeV with 140 fb⁻¹ (lowest for some time)
1.7 GeV preliminary with 605 fb⁻¹ (new record)
1.6 GeV is possible with the first a few ab⁻¹ data
(so far we observe that this is a statistics issue, need 10% off-resonance)

- Full reconstruction analysis:
 No need of off-resonance, 5 ab^{-1} for the current stat. error
- No tan β dependence, comparison with $B^+ \rightarrow \tau^+ \nu$

$b \rightarrow s \ell^+ \ell^-$ prospects

- Many observables BF, q^2 spectrum, A_{FB} , A_{CP} , ... to classify new physics with 3 types of interactions (3 Wilson coefficients, C_7 , C_9 and C_{10} for corresponding operators)
- Exclusive mode ($B \rightarrow K^* \ell^+ \ell^-$) probably done at LHCb (form factor uncertainty would be irreducible)
- Inclusive measurement
 - Sum of exclusive (up to 140 fb⁻¹ so far)
 - Fully inclusive (extremely difficult according to very early MC study)

(no inclusive A_{FB} study yet, for any ab^{-1})

Loop vs tree high precision unitarity triangle measurement

 $|V_{cb}|$ from $b \rightarrow c\ell^-\overline{\nu}$ defines the unit ϕ_2 from $B \rightarrow \pi\pi$ is mixture of loop and tree Ideal strategy: compare Loop vs Tree, cross-check with ϕ_2

- $S = \sin 2\phi_2$ if no penguin pollution
- Isospin analysis measure all branching fractions and A_{CP} for $B^0 \to \pi^+ \pi^-$, $B^\to \pi^0 \pi^0$ and $B^\pm \to \pi^\pm \pi^0$

ϕ_2 from $B \rightarrow \pi \pi$, $\rho \pi$ and $\rho \rho$

• $\pi\pi$ and $\rho\rho$: time dependent isospin analysis Need to measure \mathcal{B} and A_{CP} of (+–), (±0), (00) combinations in addition to \mathcal{S}

(sensitivity also depends on central values)

 ρπ: time dependent Dalitz analysis
 Less multi-fold ambiguity, need details of higher resonances

ϕ_2 combined

Note: theory/isospin error not included, but free from LQCD!

Methods

- †CPV of $B \rightarrow D^{*\pm}\pi^{\mp} (\sin(2\phi_1 + \phi_3))$
- $B^{\pm} \rightarrow D_{CP}K^{\pm}$ (GLW method)
- $B^{\pm} \rightarrow D_{\text{DCSD}}K^{\pm}$ (ADS method)
- $B^{\pm} \rightarrow D^0 K^{\pm}$, $D^0 \rightarrow K^0_S \pi^+ \pi^-$ Dalitz analysis

	5 ab^{-1}	50 ab^{-1}	
$B \to D^{*\pm} \pi^{\mp}$	18°	6°	(depends on the value of r)
GLW + ADS	16°	5°	
Dalitz	7 °	2.5 °	(need charm-factory data)
All combined	6°	2°	

(cf. LHCb (10 fb⁻¹ / 2013) — $\delta\phi_3 \sim 2^\circ$ from $D_s K$ (5°), ADS (4°), GLW (4°), Dalitz (5°))

V_{ub} (inclusive measurement)

 $|V_{ub}| = (3.98 \pm 0.15_{exp} \pm 0.30_{theo}) \times 10^{-4}$ — (Jan.7,2008 HFAG)

 $8.3\% = \pm 2.0_{stat} \pm 2.5_{exp} \pm 1.8_{b2cmodel} \pm 1.1_{b2umodel} \pm 6.3_{HQEparam} \pm 0.4_{SFfunc} \pm 0.7_{subSF} \pm 3.6_{matching} \pm 1.4_{WA}$

- Full-recon tag with M_X cut for a better background handle expected experimental error ~ 3% at 5 ab⁻¹
- HQE parameters to be reduced from $b \rightarrow c\ell^-\overline{\nu}$ expected theory error ~ 5% at 5 ab⁻¹

- Exclusive $B \to \rho \gamma \delta \mathcal{B}(\rho^0 \gamma) \sim 9\%$, $\delta \mathcal{B}(\rho^+ \gamma) \sim 12\%$ at 5 ab⁻¹ (but no way to reduce form-factor error ~ 25% for $|V_{td}/V_{ts}|$)
- Inclusive $B \rightarrow \rho \gamma$ would be possible, $\delta \mathcal{B} \sim 24\%$ at 5 ab⁻¹ (theory error has to be also taken into account)

Unitarity Triangle at 5 ab^{-1}

- V_{ub} from inclusive $b \to u\ell^-\overline{\nu} \Rightarrow \delta = 6\%$
- ϕ_3 from $B \to DK \Rightarrow \delta = 6^\circ$ with 5 ab^{-1} (LHCb maybe doing better)
- $|V_{td}|$ from $B \to X_d \gamma \Rightarrow$ theory error? $(\Delta m_s / \Delta m_b \text{ measurement would be still better — Lattice?})$
- Upgraded KEKB alone gives interesting constraints Lattice QCD will help to further reduce errors $(V_{ub} \text{ from exclusive}, V_{td} \text{ from } B \rightarrow \rho\gamma)$

Errors for 5 ab^{-1} (with no LQCD info)

Central values from 2007 averages

Unitarity Triangle at 50 ab^{-1}

- V_{ub} from inclusive $b \to u\ell^-\overline{\nu} \Rightarrow \delta = 4\%$
- ϕ_3 from $B \to DK \Rightarrow \delta = 2^\circ$ with 50 ab⁻¹ (LHCb maybe doing better)
- $|V_{td}|$ from $B \to X_d \gamma \Rightarrow$ theory error? ($\Delta m_s / \Delta m_b$ measurement would be still better — Lattice?)
- Upgraded KEKB alone gives interesting constraints Lattice QCD will help to further reduce errors $(V_{ub} \text{ from exclusive}, V_{td} \text{ from } B \rightarrow \rho\gamma)$

Errors for 50 ab^{-1} (with no LQCD info)

Central values from 2007 averages

Lepton flavor violation searches in high statistics τ decays

τ lepton flavor violation (LFV)

🔵 Quark mixing 🏓 KM

- Neutrino mixing
- Charged lepton LFV?
 - LFV through neutrino mixing is extremely small: e.g. $\mathcal{B}(\tau \to \mu \gamma) \sim 10^{-54}$
 - BSM scenarios (SUSY, etc) generates LFV:
 SUSY SO(10) ~ 10^{-8} ,
 sSUGRA + seesaw ~ 10^{-7}
- Many modes to search (those including lepton number violation with and without B - L)

Searches down to ~ 10^{-8} with 3–10 ab⁻¹

Analysis and prospects

• $\tau^- \rightarrow \ell^- \gamma$ modes

- Not background free (such as $e^+e^- \rightarrow \tau^+\tau^-\gamma$)
- limit scales with 1/ $\sqrt{\mathcal{L}}$
- $\tau^- \rightarrow \ell^- h^0$ and $\tau^- \rightarrow \ell^- \ell^+ \ell^-$ modes
 - background free at least till ~ 1 ab⁻¹ (too little background now)
 - limit scales with $1/\mathcal{L}$

Concerns

- Photon energy resolution is the key in $\tau \rightarrow \ell \gamma$ modes
- Trigger: low multiplicity trigger as of now will be kept

Many τ LFV possibilities (5 ab⁻¹)

Charm physics CP violation in up-quark sector

$D^0 \overline{D}^0 \mathbf{CPV}$

• $x = (0.84^{+0.32}_{-0.34})\%$, $y = (0.69 \pm 0.21)\%$ are larger than SM, but not incompatible

 It could also be non-SM effect... to confirm, search for CPV (only 10⁻⁴ in SM)

$$A_{\Gamma} = \frac{\Gamma(\overline{D}^0 \to K^+ K^-) - \Gamma(D^0 \to K^+ K^-)}{\Gamma(\overline{D}^0 \to K^+ K^-) + \Gamma(D^0 \to K^+ K^-)}$$
$$= \frac{1}{2} A_M y \cos \phi - x \sin \phi$$

latest world average (> 5σ)

NOW: $A_{\Gamma} = (0.1 \pm 3.0 \pm 1.5) \times 10^{-3}$ (0.5 ab⁻¹)

 $\delta A_{\Gamma} \sim 10^{-3}$ with 5 ab^{-1} for $D \rightarrow K^+K^-$

Dalitz analysis mode ($D \rightarrow K_S^0 \pi \pi$) will be equally sensitive to CPV

Summary

many summary lines have to be included many summary lines have to be included many summary lines have to be included many summary lines have to be included

Summary

- Key measuments are already very exciting with 3–5 ab^{-1}
 - $b \rightarrow s$ penguin: mode-by-mode CPV with $\delta S < 0.1$
 - Extensive test on charged Higgs
 - RH current search with $\delta S \sim 0.1$
 - Inclusive measurements: $b \rightarrow s\gamma$, $b \rightarrow s\ell^+\ell^-$, ...
 - Precise ϕ_2 ($\delta = 2^\circ$) provides a reference point ($\overline{\rho}, \overline{\eta}$)
 - \bullet LFV τ decay search range down to 10^{-8}
 - CPV in D decays
- Many other physics potentials (not discussed)
 - $B \to K v \overline{v}$ and other rare decays
 - New particles, and more and more and more...
- Meanwhile let's push hard for 50 ab^{-1} or more

Backup

Prospects on full reconstruction

- Soft photon reconstruction:
 - Less material in front of Csl
 - More beam background pile-up

Full reconstruction code is now being revisited

 $B \rightarrow X_d \gamma$ at 5 ab⁻¹

$B \rightarrow X_d \gamma$ seems to be possible with 5 ab⁻¹!

(still challenging, systematic error could be quite different in reality)

$A_{FB}(B \rightarrow K^* \ell^+ \ell^-)$ at 5 ab⁻¹

• Sensitive to C_9 and C_{10} Wilson coefficients

- Full (q^2, θ) fit with SM q^2 dist with leading coefficients only (A_9 and A_{10})
 - $\delta A_9/A_9 \sim 11\%$ $\delta A_{10}/A_{10} \sim 13\%$ at 5 ab⁻¹ (i.e., $\delta A_9/A_9 \sim \delta A_{10}/A_{10} \sim 4\%$ at 50 ab⁻¹)

LHCb?

Beam-background

Vertex (SVD)

- Fast readout chip (APV25)
- Eventually monolithic pixel
- Drift chamber (CDC)
 - Larger SVD radius
 - small cell to shorten drift time
- Calorimeter (ECL)
 - Sampling readout + wave form analysis
 - Pure Csl (endcap only, costly...)
- Muon, K_L^0 (KLM)
 - RPC to scintillator tile

All these efforts just to compensate