CDC Upgrade

Shoji Uno (KEK) Mar-20th, 2008

- Beam background
- Simulation study
- Idea for upgrade
- Upgrade plan
- Summary

Hit rate

Hit rate at layer 35 Dec.,2003

 $I_{HER} = 4.1A \quad Hit rate = 13 kHz$ $I_{LER} = 9.4A \quad Hit rate = 70 kHz$ In total 83 kHz

Dec., 2003 : ~5kHz Now : ~4kHz

Simulation Study for Higher Beam Background

by K.Senyo.

BG effect on analysis

$V/\psi(\rightarrow \mu\mu)K_S(\rightarrow \pi^+\pi^-)$				$D^*D^*(D^*)$	$\rightarrow D\pi_s$	$, D \rightarrow K3$
	B Eff	Ratio-1			B Eff	Ratio-1
Nominal	56.8 %	0.0 %		Nominal	6.48	0.0 %
×5 BG	56.0 %	-1.5 %		×5BG	5.69	-12.2 %
× 20 BG	49.0 %	-13.8 %		× 20 BG	2.28	-64.9 %
With 40% shorter shaping				With 4	0% shorter	shaping
× 20 BG	51.4 %	-9.5 %		× 20 BG	3.86	-40.5 %

Preliminary

By H.Ozaki

- Major loss come from low tracking efficiency on slow particles
- Efficiency loss on high multiplicity event is serious
- Pulse shape information by FADC readout can save efficiency
- SVT standalone tracker will be a great help (not included in this study) Jan24-26, 2008 BNM2008 Atami, Japan

Background effect on tracking

 $D^*D^*(D^* \to D\pi_s, D \to K3\pi)$

Many low momentum tracks, the hardest case for tracking

Gain in reconstruction efficiency of $B \rightarrow D^*D^*$

Tracker BKG	Belle	Software update	+SVD tracker	
Della	ε =4.3%	ε =7.1%	ε =11.9%	
Belle	0% (definition)	+65%	+177%	
		ε =6.3%	ε =11.2%	
× 5 BG		+47%	+160%	
× 20 PC		ε =3.8%	ε =8.8%	
× 20 BG		-12%	+105%	

Excellent with help of SVD

H. Ozaki

BNM2008

Idea for upgrade

In order to reduce occupancy,

→Smaller cell size

- A new small cell drift chamber was constructed and installed.
- It has been working, well.

→ Faster drift velocity

• One candidate : 100% CH₄

- → Results show worse spatial resolution due to a large Lorentz angle.
- \rightarrow A beam test was carried out under 1.5T magnetic field.
- So far, no other good candidate.

Small Cell Drift Chamber

Photo of small cell chamber

Just after wire stringing

Installation in 2003 summer

XT Curve & Max. Drift Time

Normal cell(17.3mm)

Small cell(5.4mm)

Chamber Radius

Inner radius

- → Physics : Vertexing efficiency using Ks
- \rightarrow SVD determines the boundary.
- \rightarrow At present, the boundary is 15cm in radius.

Outer radius

- New barrel PID device determines the outer radius.
- \rightarrow At present, 115cm is selected, tentatively.
- The boundary condition is important to start construction.

→Basically, CDC can manage any radius.

Wire configuration 1

Super-layer structure

6 layers for each super-layer

- \rightarrow at least 5 layers are required for track reconstruction.
- → Even number is preferred for preamp arrangement on support board to shorten signal cable between feedthrough and preamp.
- Additional two layers in inner most superlayer and outer super-most layer.
 - \rightarrow Higher hit rate in a few layers near wall.
 - Inner most layer and outer most layer are consider as active guard wire.

Wire configuration 2

9 super-layers : 5 axial + 4 stereo(2U+2V)
A 160*8, U 160*6, A 192*6, V 224*6,
A 256*6, U 288*6, A 320*6, V 352*6, A 388*8
Number of layers : 58
Number of total sense wires : 15104
Number of total wires : ~60000

Deformation of endplate

Number of wires increase by factor 2.

- → Larger deformation of endplate is expected.
- → It may cause troubles in a wire stringing process and other occasions.
- Number of holes increases, but a chamber radius also enlarges. Cell size is changing as a function of radius to reduce number of wires.
 - The fraction of holes respect to total area is not so different, as comparing with the present CDC.
 - 11.7% for present CDC
 - 12.6% for Super-Belle CDC
- In order to reduce deformation of endplates,
 - → The endplate with a different shape is considered.
 - \rightarrow Wire tension of field wires will be reduced.
- Anyway, we can arrange the wire configuration and can make a thin aluminum endplate.

Curved Endplate

Deformation of endplate due to wire tension was calculated at design stage of present Belle CDC.

Baseline design

Main parameters

	Present	Future
Radius of inner boundary (mm)	77	160
Radius of outer boundary (mm)	880	1140
Radius of inner most sense wire (mm)	88	172
Radius of outer most sense wire (mm)	863	1120
Number of layers	50	58
Number of total sense wires	8400	15104
Effective radius of dE/dx measurement (mm)	752	978
Gas	He-C ₂ H ₆	He-C ₂ H ₆
Diameter of sense wire (µm)	30	30

Expected performance

Occupancy

- \rightarrow Hit rate : ~100kHz \leftarrow ~5Hz X 20
- →Maximum drift time : 80-300nsec
- →Occupancy : 1-3% ← 100kHz X 80-300nsec = 0.01-0.03

Momentum resolution(SVD+CDC)

- $\sigma_{Pt}/Pt = 0.19Pt \oplus 0.30/\beta[\%]$: Conservative
- σ_{Pt} /Pt = 0.11Pt ⊕ 0.30/β[%] : Possible ← 0.19*(863/1118)²

Energy loss measurement

- →6.9% : Conservative
- \rightarrow 6.4% : Possible \leftarrow 6.9*(752/869)^{1/2}

About readout electronics

At present,

- \rightarrow S/QT + multi-hit TDC
- \rightarrow S/QT : Q to Time conversion
- → FASTBUS TDC was replaced with pipeline COPPER TDC.

Three options,

- → High speed FADC(>200MHz)
- → Pipeline TDC + Slow FADC(~20MHz)
- → ASD chip + TMC(or new TDC using FPGA) + slow FADC near detector.
 - ASIC group of KEK Detector Technology Project is developing new ASD chip.
 - New TDC using FPGA is one candidate for TDC near detector.

ASD chip

Gain : ~7V/pC

Integration time : 1nsec 1/t tail cancel. PZC

Fe-55 5.9keV X-ray

New electronics (just my idea)

All electronics should be located near the end plate. Slow FADC for Pulse Height Main Board ASD ASIC chip 4ch/chip measurement H FPGA for FADC control -FPGA for daughter board time measurement 4 chips/board FPGA for trigger

When Belle group decides the upgrade plan, we can start construction of the new chamber soon.

 \rightarrow It takes three years to construct the chamber.

- Outer radius(and inner radius) should be fixed as soon as possible.
 - \rightarrow Barrel PID determines the schedule.
 - \rightarrow Inner radius should be determined by SVD.
 - → Supporting structure should be discussed.
- One big worry is man power.

 \rightarrow I hope many people join us when the upgrade plan starts.

My Personal Plan for Construction

	JFY	2009				2010				2011				2012			
Items		Ι	II	III	IV												
Fixing outer radious	2009/3/1																
Wire configuration design	2009/3/1-2009/3/31																
Final check using simulation	2009/3/1-2009/4/30																
Endplate design	2009/3/1-2009/4/30																
Endplate bidding	2009/6/1																
Endplate machining	2009/7/1-2009/12/31																
Drilling	2010/1/1-2010/6/30																
Assembling of Endplates	2010/7/1-2010/7/31																
Wire stringing	2010/8/1-2011/3/31																
Tension measurement	2011/4/1-2011/4/30																
Insertion of outer cylinder	2011/5/1-2011/5/2																
Insertion of inner part	2011/5/3-2011/5/4																
Tension measurement	2011/5/5-2011/5/31																
Gas leak test	2011/6/1-2011/8/31																
HV cabling	2011/9/1-2011/9/10																
HV test	2011/9/11-2011/9/30																
Signal cabling	2011/10/1-2011/10/30																
Preamp + Cooling water	2011/11/1-2011/11/31																
Cosmic ray Test at clean room	2011/12/1-2012/1/31																
Installation of CDC & Test	2012/2/1-2012/2/28																
Cosmic ray test on 1.5Tesla	2012/4/1-2012/6/30																
Roll in	2012/8/1																
Beam on	2012/10/1																(

Radiation Damage Test

Test chamber and beam test

- A test chamber with new cell structure was constructed.
 - Part of inner most 20 layer(8 layers with small cell + 12 layers with normal cell)
- A beam test was carried out in the beginning of June at π2 beam line of 12GeV PS.
 - → We confirmed the simulation for pure CH₄ is correct. Velocity under 1.5T is not faster than the present gas and the drift line is largely distorted due to larger Lorentz angle.
 - Similar performance could be obtained using new S/QT module with less dead time.
 - Many data were taken using 500MHz FADC, which was developed by KEK electronics group. Now, a student is analyzing data. We hope to get information about minimum necessary sampling speed for timing and dE/dx measurement.

xt curve for new gas(7mm cell)

 $He/C_2H_6 = 50/50$

Pure CH₄

Wire chamber

- Wire chamber is a good device for the central tracker.
 - \rightarrow Less material \rightarrow Good momentum resolution.
 - \rightarrow Cheap \rightarrow It is easy to cover a large region.
 - \rightarrow Established technology \rightarrow Relatively easier construction.
 - → Many layers → Provide trigger signals and particle ID information.
- Wire chamber can survive at Super-KEKB.

Our answer does not change after the last WS in 2004.

- The beam background became smaller even for higher beam current and higher luminosity.
- \rightarrow We recognize the luminosity term is small, clearly.

CDC Total Current

 Maximum current is still below 1.2mA, even for higher stored current and higher luminosity.

Vacuum condition is still improving.

- Thanks KEKB people for hard work.
- I hope there is still room to improve vacuum condition further.

Random trigger

	Luminosity 10 ³⁴ cm ⁻² sec ⁻¹	No. of channel N _{Total}	Readout time (µsec)	Q>0	Q>50 N _{Hit}
Belle	1.5	8464	6	-	300
Babar	0.8	7104	2	~700	~350

	Occ. = N _{Hit} /N _{Total} (%)	Occ./Time (%/µsec)	Max. drift time (µsec)	Occ./Time x Max. Drift time (%)	Normalized by Lum.(%)
Belle	3.5	0.58	0.4	0.23	0.15
Babar	4.9	2.45	~0.6	1.47	1.84

x20 Bkgd in Belle CDC ~ x3 Bkgd in Babar DCH

DCH Tracking Performance

For the DCH the interesting quantities are tracking efficiency and momentum resolution

We did not look at impact to particle identification (dE/dx)

Invariant mass and efficiency results:									
	1xBkgd	3xBkgd	5xBkdg						
Rel. tracking efficiency (%)	100.0	98.6	97.4						
Rel. D0→K⁺π⁻ efficiency (%)	100.0	96.0	95.5						
D ^o mass resolution (MeV/c ²)	6.5	6.5	6.4						
J/ $\psi \rightarrow \mu^{+}\mu^{-}$ efficiency (%)	72.8	72.5	71.5						
J/ψ mass resolution (MeV/c ²)	12.7	12.9	13.0						

 Tracking efficiency drops by about 2.5% at 5xBkgd (the J/ψ tracks seem somewhat better)
Mass resolution is about 2% worse for J/ψ events
Matches a 1% degradation in momentum resolution seen in generic tracks

The changes are so small that we are not particularly worried

Brian Petersen

at HL6 in KEK