Upgrade Plan of KEKB Vacuum system

Y. Suetsugu KEKB Vacuum Group

Contents

- Challenges for vacuum system
- Designs for key issues
 - Beam ducts, Flanges,
 - RF-shielding, Cures for ECI,,
- Remained issues
 - Technical
 - General
- Summary

Challenges for vacuum system

Key parameters for vacuum system:

- > High current (LER:9.4 A, HER:4.1 A)
- > Short bunch ($\sigma_z = 3 \text{ mm}$)
- Intense SR power
 - Max. power density of 28 kW/m (40 W/mm²) even a half aperture of 110 mm, for example.
- High photon density
 - Photon density ~1x10¹⁹ photons/m/s in average
 - Large gas desorption
 - Gas load ~ 5×10^{-8} Pa m³/s/m (for $\eta = 1 \times 10^{-6}$ molecules/photon)
 - Average pressure ~ 5×10^{-7} Pa for S ~ 0.1 m³/s/m
 - Electron Cloud Instability (ECI) becomes a big issue in positron ring
- Intense HOM (higher order mode) power
 - For a loss factor of 1 V/pC, loss power ~ 200 kW

Present designs for key items

- We have been developing key components and techniques to tackle these issues.
- Beam duct
 - Copper beam duct with ante-chambers → Low SR power Little photoelectron
- Pumping system
 - Distributed pumping scheme \rightarrow Effective pumping
- Connection flange
 - Special MO-type flange → Secure RF bridge
- RF shielding of bellows and gate-valves
 - Comb-type RF shield basically → Secure RF shield
- Movable mask (collimator)
 - Stealth type (still under study) \rightarrow Low impedance
- Cures for ECI
 - TiN coating or (groove) \rightarrow Low secondary electron yield
 - Clearing electrode \rightarrow Direct elimination of electros

Low Impedance

Beam duct

- Copper beam duct with ante-chambers
 - Copper is required to withstand intense SR power
 - Features (compared to simple pipe):
 - Low SR power density
 - Low photoelectrons in beam pipe
 - Low beam impedance
 - Expensive

Beam

SR

Beam duct

- Several test ducts have been installed in KEKB positron ring.
- Reduction of photoelectrons was confirmed.
- All ducts at arc section should be replaced.

Beam duct

 Bending and installation of slits are now under study

Slit for pump channel

Distributed pumping system

- Multilayer NEG strips in an antechamber
 - Increase capacity and pumping speed
 - Small impedance if set in an ante-chamber
- Auxiliary pump: Sputter ion pump

Multilayer NEG strips for test (three layers)

Pump

Connection flange

- Special MO-type flange for a beam duct with antechambers. MO-type flange for bellows
 - Features (Compared to usual one):
 - No gap inside
 - Sure RF bridge
 - Applicable to a complex aperture
 - Simple structure
- Already applied to test beam ducts and bellows with ante-chambers.

RF shielding

- Comb-type RF shield
- Features (compared to finger type):
 - Low beam impedance
 - High thermal strength
 - Applicable to complex aperture
 - Little flexibility (offset)
- Effect of RF shielding was demonstrated in KEKB.
- Finger-type as an option
 If more flexibility is required.

Temperature of bellows

Mannan Manna Mannan Mannan Mannan Mannan Mannan Mannan Mannan Mannan Mannan Manna Mannan Mannan Mannan Mannan Mannan M Mannan Manna Ma

RF shielding

- Already applied to bellows chambers and gatevalves, with an aperture of beam duct with ante-chambers.
- They have been installed into KEKB and tested.

Bellows chamber

Movable mask (collimator)

- Big impedance sources in the ring
- Planning to use "stealth" type (Ver.6)
 - Low beam impedance
 - Present Ver.4 ~ $1V/pC (\phi 90 \text{ mm}) \rightarrow 200 \text{ kW power loss}$
 - Loss factor decreases to $\sim 1/10 \ (\phi 90 \text{ mm})$.
 - Manageable by conventional HOM absorber

Movable mask (collimator)

- Trial models were installed and tested with beam.
 - Principle was proved experimentally.
 - Temperature rise of bellows decreased to 1/2 ~ 1/3.
 - But, could not withstand a high intensity beam yet.

Start with Ver.4 ?

While beam current is low.

eam

Head of Ver.6 (trial model)

Head

Support

Cure for ECI_1

- A critical issue for positron ring
- TiN coating on inner surface
 - Decrease secondary electron yield (SEY): Max. SEY ~0.9
 - A test stand for the coating was built in KEK, and applied to a test duct with ante-chambers.
 - Decrease of electrons at high current region was demonstrated.

Cure for ECI_2

- Clearing Electrode
 - A possible measure even inside of magnet
- An electrode for test with a low beam impedance was developed, and tested.
 - The principle was proved experimentally.
 - Electrons decreased to ~ 1/10 by applying ±500 V.
 - Under study
- Grooves will be also tested.

Clearing electrode for test

Remained issues _ Technical

- Optimization of beam duct shape
 - CSR (Coherent Synchrotron Radiation) problem have a great effect on the luminosity.

- Deformation of beam duct by heating
 - Displacement gauge for every BPM?

Remained issues _ Technical

- Required pressure
 - Now 5x10⁻⁷ Pa is a goal.
 - First Ion Instability require lower pressure in a simulation, ~1x10⁻⁷ Pa for example.
 - More pumps?

Cures for ECI in magnet

- Still studies are undergoing.
- Clearing electrode ? Grooves? Only TiN?
- Drift space: TiN coating + Solenoid will be OK.
- Design of special components
 - Septum, Abort window, HOM absorber, Cross section, ...
- Design of vacuum system at IR.
 - IR optics is still floating.
 - How to keep sufficient aperture, how to deal intense SR,,

Remained issues _ General

- Cost
 - Vacuum components are more complicated than those of other machine to achieve high current, i.e., Luminosity.
 - Possibility of cost-reduction are continuously considered, such as to use aluminum duct for weak SR sections (with copper SR crotch?).
- Vendor
 - Manufacture ~2000 copper beam ducts (2 ~ 6 m long) in 3 years!
 - Find available vendors widely, all over the world.
 - Some R&D were performed with BINP, for example.
- Installation
 - Install ~2000 beam ducts and bellows in 2 years!
 - Stored place, Installation procedure, Preparation process,,
- Man power

Summary

- Upgrade of KEKB is a great challenge for the vacuum system.
- R&Ds have been performed for these years, and basic designs of key vacuum components is near completion.
- But, various practical problems are still remained.
- Any solutions should be found in this one year.
- We will appreciate your corporation.

