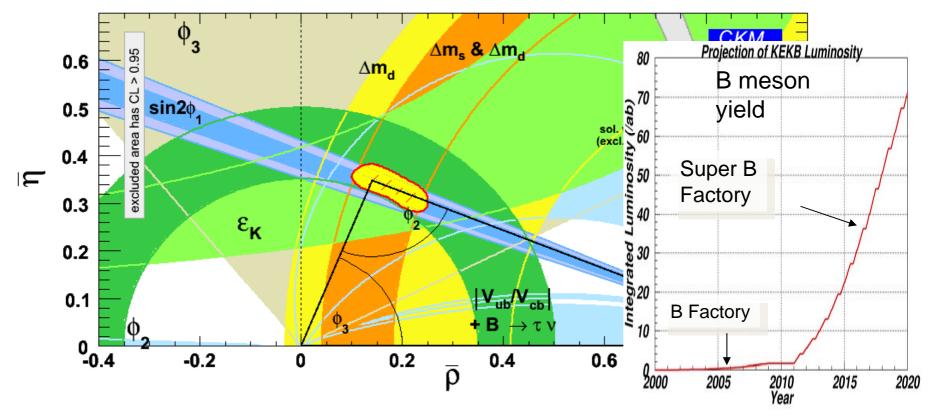
Time-dependent CP violation measurements in B⁰ to charm and charmonium modes

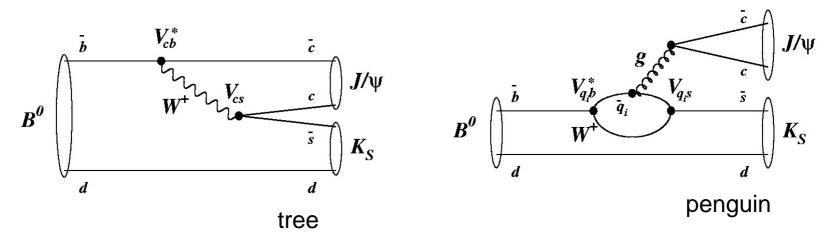

T. Aushev (ITEP)

1st Open SuperKEKB meeting KEK, 10.12.2008

Outline

- Introduction
- B to charmonium decays
 - Current results & expectations
- B to Double charm decays
 - Why it is interesting
- Summary

Introduction



- •SM perfectly works at the moment
- ·Even if there is a discrepancy, it is very small
- Precise measurements are needed to search for New Physics contribution

B to charmonium

• B^0 meson decays to charmonium via b->c c-bar q transition, which provides $sin(2\phi_1)$ measurement:

$$\lambda_{J/\psi K_{S}} = \eta_{J/\psi K_{S}} \left(\frac{V_{tb}^{*} V_{td}}{V_{tb} V_{td}^{*}} \right) \left(\frac{V_{cb}^{*} V_{cs}}{V_{cb} V_{cs}^{*}} \right) \left(\frac{V_{cs}^{*} V_{cd}}{V_{cs} V_{cd}^{*}} \right) = - \left(\frac{V_{tb}^{*} V_{td}}{V_{tb} V_{td}^{*}} \right) \left(\frac{V_{cb}^{*} V_{cd}}{V_{cb} V_{cd}^{*}} \right) \Rightarrow \Im(\lambda_{J/\psi K_{S}}) = \sin 2\phi_{1}$$

B to charmonium (cont'd)

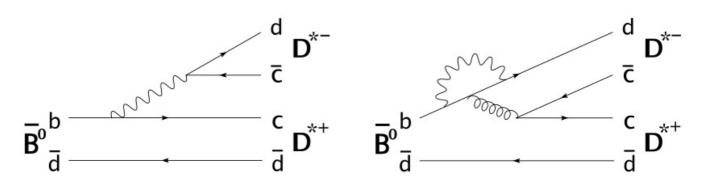
- Pair c c-bar can form several charmonium states, like J/ψ , ψ (25), X_{c0} , X_{c1} , X_{c2} , $\eta_{c...}$
- From reconstruction point of view J/ψ is the most effective one and has the smallest theoretical uncertainty
- But with higher statistics also less effective modes can be measured

"Golden mode" & Ko

Mode	Current $sin(2\phi_1)$	Error on 10 ab ⁻¹	Error on 50 ab ⁻¹
J/ψ K $^{\mathrm{O}}$	+0.642±0.036±0.0	±0.008±0.012	±0.004±0.012
J/ψ K^{*0}	+0.24±0.31±0.05	$\pm 0.07 \pm 0.04$	$\pm 0.03 \pm 0.04$
J/ψ π^{0}	$-0.65\pm0.21\pm0.05$	±0.05±0.04	±0.02±0.04
$J/\psi \phi$	$N(657M)=5\pm3$	76 events	380 events
Ψ(25)	$+0.72\pm0.09\pm0.03$	±0.02±0.02	400 B° → J/ψK°
X c0	$\varepsilon = \varepsilon (J/\psi)/10$		S 200 100 100 100 100 100 100 100 100 100
X c1	$\varepsilon = \varepsilon (J/\psi)/4$	~2 x error (J/ψ)	0 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X c2	$\varepsilon = \varepsilon (J/\psi)/8$		Asymmetry of the second of the
η _c	$\varepsilon = \varepsilon (J/\psi)/10$	~3 x error (J/ψ)	-7.5 -5 -2.5 0 2.5 5 -ξ _f Δt(ps)

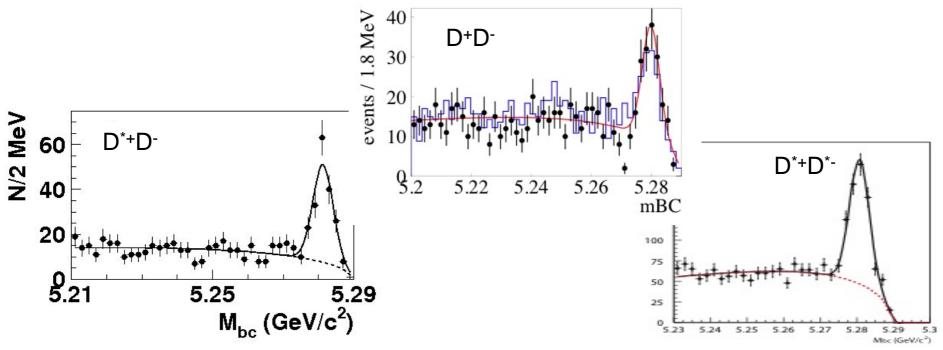
- •For the "golden mode" errors will be systematics dominated
- •Only part of the systematical error is statistically dependent and so can be reduced
- •The main systematics comes from the vertex reconstruction

B -> Double Charm


The main decay modes are:

$$-B^{0} \rightarrow D^{+}D^{-}$$
 $-B^{0} \rightarrow D^{*+}D^{-}$
 $-B^{0} \rightarrow D^{*+}D^{*-}$
 $-B^{0} \rightarrow D^{*+}D^{*-}K_{S}$

- As well as in B to charmonium $B->D^{(*)+}D^{(*)-}$ occurs via b->c c-bar d
- The same matrix elements are involved, which rises CP asymmetry $\sim \sin(2\phi_1)$


B -> Double Charm

- The dominant contribution is due to tree diagram
- Unlike "golden modes" penguin contribution is due to b -> d loop. Even in SM its phase is different from tree one. Small DCPV is expected and small difference in ICPV phase is possible.
- If NP contributes to b->d penguin additional discrepancy with "golden modes" can be observed. It is challenge how to distinguish NP from QCD uncertainties in SM penguin calculation.

Current measurements

- •On the current Belle statistics pure signals are observed in all of the decay modes and CPV measurements are performed: about 3 sigma CPV in each of the decays
- •No significant discrepancy with SM is observed
- •~3 sigma DCPV effect is seen in B⁰ -> D⁺ D⁻ channel

Expected errors on SuperKEKB

	Used	S value	Error on 10	On 50 ab ⁻¹
B ₀ -> D+ D-	535M	-	$\pm 0.07 \pm 0.05$	$\pm 0.03 \pm 0.05$
B ₀ -> D*+- D-+	152M	$0.55\pm0.39\pm0.$	±0.05±0.05	±0.02±0.05
B ₀ -> D _{*+} D _{*-}	657M	-	±0.06±0.07	$\pm 0.03 \pm 0.07$
B ⁰ -> D*+ D*- K _S	449M	+0.06±0.45±	±0.10±0.05	±0.04±0.05

- •Final precision is comparable with current precision from the "Golden mode"
- •Statistical error expected to be of the same order as systematical

Summary

- For the most precise and important measurement $B^0 \rightarrow J/\psi$ K_s , which is used as a reference point, the error will be dominated by systematics
- In most of the decay modes CPV could be measured with the same precision as current "golden mode" one
- B to Double Charm can examine NP in b->d penguins