

Summary of PXD Session

H.-G. Moser Max-Planck-Institut fuer Physik

- 1 Status of CAPS
- 2 Status of SOI
- 3 DEPFET Project
- 4 Status of DEPFET R&D L. Andricek
- 5 DEPFET test beam

- H. Hoedlmoser (Video)
- Y. Arai
- C. Kiesling
- - P. Kodys

H.-G. Moser Max-Planck-Institut

fuer Physik

Vertexing at SuperBelle

Increased background ⇒Radiation damage ⇒Occupancy

Shorter readout times (SVD with APV25) Higher granularity: pixel detector 79mm => 75 μ m: factor 1000 however: 10 μ s integration time: factor 100 improvement

Improve performance?

$$\phi_{\rm MS} = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln \left(\frac{x}{X_0}\right) \right]$$

Beam pipe: 0.66% X_0 @ 1.5 cm: $\sigma_{ip}(MS) = 17 \ \mu m$ for 1 GeV/c (normal incidence)

1st open meeting SuperBelle KEK 12.12.2008 No need for very small pixels! 50 x75 μ m² ok It's the material! => thin silicon!

Keep beam pipe radius small ! Keep beam pipe thin!

Momentum spectrum of tracks in ee→BB sample

2

	Binary CAPs	
HG. Moser ax-Planck-Institut	H. Hoedlmoser, H	ławaii
fuer Physik		
	CAP4 AMS 0.35 mm Opto (E. Martin)	Chattoring pixels
	• Study of new analog and binary designs	Chattening pixels
	(E. Martin)	
	 Study of 0.15 mm Fully Depleted OKI process 	Problems due to SOI process
	CAP7 SOI (M. Cooney)	Latch instand of flip flop
	 0.2 mm OKI SOI process submitted 01/2008 improved binary design from CAP5 	No chatter Back 11/2008
1 st open meeting SuperBelle KEK	CAP6 hexagonal binary design in AMS 0.35 mm Opto (M. Cooney)	
12.12.2008	 completely new readout concept 	

• submitted 10/2008

Binary readout

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$

CAP4 design Problem: ghost hits

H.-G. Moser Max-Planck-Institut fuer Physik

5

seeded hit background X reconstructed O rec @ t_{ero}

21x6 mm² array 25 μ m square pixels 100 MHz transfer in periphery 12 transferelines 72 outputs Occupancy: 5.2 x 10⁻⁵ @ 30 times current background

(frame readout: ~ 10⁻²)

Prototyp (CAP6) in production

transferline multiplicity

SOI R&D

Features of SOI Pixel Detector

- Bonded wafer : High Resistivity (Sensor) + Low Resistivity (CMOS).
- Truly Monolithic Detector (-> High Density, Low material, Thin Device).
- Standard CMOS can be used (-> Complex functions in a pixel).
- No mechanical bonding (-> High yield, Low cost).
- Fully depleted sensor with small capacitance of the sense node (~10fF, High conversion gain, Low noise)
- Based on Industrial standard technology (-> Cost benefit and Scalability) SOI Pixel Detector
- No Latch Up, Rad Hard.
- Low Power
- Low to High Temp (4K-300C) operation

Y. Arai

KEK SOIPIX History

'05. 7: Start Collaboration with OKI Elec. Co. Ltd.

'05.10: TEG submission to OKI SOI 0.15 μm process.

'06.12: 1st 0.15 um MPW run hosted by KEK.

(17 designs; KEK, Japanese Universities, LBNL, FNAL, U of Hawaii)

'07.6: Process (and Fab.) is changed from 0.15 μm to 0.2 $\mu m.$

'08.1: 1st 0.2 um KEK MPW run is submitted.

'09.1: 2nd 0.2 um MPW run will be submitted.

'09.6: 3rd 0.2um MPW run is planned.

1st open meeting SuperBelle KEK 12.12.2008

7

2008.1 MPW run with KEK, LBNL, FNAL, Hawaii

Results

H.-G. Moser Max-Planck-Institut fuer Physik

 $\Delta p \Delta q \ge \frac{1}{2} t$

1st open meeting SuperBelle KEK 12.12.2008

Counting pixels (x-ray imaging) sBelle pixels: 48x48 pixels (100 x 100 µm²)

Works, but problems due to back-gate-effect Successful with x-rays

LBNL beam tests: best S/N (15) at U=10V Gets worse at higher U (no full depletion)

8

Double the number of submissions at OKI

H.-G. Moser Max-Planck-Institut fuer Physik Reduce back-gate-effect:

Double SOI

Implant through BOX

3D/SOI Project (with ZyCı To be bonded in April 09

Second layer to shield substrate

Reduce field under oxide

DEPFET Status

 $\Delta p \cdot \Delta g \ge \frac{1}{2} t$

Each pixel is a p-channel FET on a completely depleted bulk

H.-G. Moser fuer Physik

A deep n-implant creates a potential Max-Planck-Institut minimum for electrons under the gate Signal electrons accumulate in the internal gate and modulate the transistor current (g_a ~ 400 pA/e⁻)

> Accumulated charge removed by a clear contact ("reset")

Fully depleted: \Rightarrow large signal, fast signal collection

Low capacitance, internal amplification: => low noise

1st open meeting **SuperBelle** KEK 12.12.2008

10

Frame readout => sequential readout of pixels or rows => rolling shutter mode => integration over many readout steps frame readout time: <10 µs

=> only few pixels active: low power => ASICs at periphery

Radius <-> Pitch

H.-G. Moser Max-Planck-Institut fuer Physik

 $p \Delta g \ge \frac{1}{2} \hbar$

Frame readout time < 10 µs Line readout time: 80 ns 2 x 4 lines per readout step -> 1000 lines along z

R	L	pitch
1.3cm	7.6 cm	76 µm
1.8cm	9.6 cm	96 µm
2.2cm	11.5 cm	115 μm

larger pitch possible

optimal charge sharing

Impact parameter resolutio scales with R ² !	n in z
Extrapolation error	~ R
Intrinsic resolution (pitch)	~ R

R	Pitch (min)	Pitch (max)
1.3cm	56µm	175µm
1.8cm	87µm	175µm
2.2cm	110µm	175µm

1st open meeting SuperBelle KEK 12.12.2008

Improvement: variable pitch

At large z:

 $\Delta p \cdot \Delta g \ge \frac{1}{2} t$

50 x (75-115) μm² (or variable in z)

Read out four rows in parallel

256 x 1000 pixels 80 ns readout time 10 μs a frame (100 kHz)

All silicon module 50 μ m active area Thick frame X₀ ~ 0.15% (average, including chips)

1st open meeting SuperBelle

KEK

12.12.2008

Test Beam

Peter Kodys

Depfet5: ME, CCG,

0.036x0.022mm

5

PXD5, 90100.

0.036x0.022mm

Depfet7: ME, CCG,

551 631

PXD5, 14B, S90100,

SC1: 4x4x4mm

722

 $\Delta p \Delta g \ge \frac{1}{2} t$ 2006 – 2008: 7 beam tests at DESY (<6 GeV) and CERN (180 GeV) Latest setup: 6 DEPFET array acting as telescope & DUT 20 M events taken => analysis in progress H.-G. Moser Max-Planck-Institut fuer Physik Depfet2: ME, CCG, Depfet6: ME, CCG, PXD5, S90K02, PXD5,S90103, 0.036x0.022mm 0.024x0.024mm SC0: 25x25x4mm Beam Position -125 79 0 213 408 [mm]: Position: 0 1 2 3 Depfet14: ME, CCG, Depfet11: ME, SIMC, PXD5, 90K02, PXD5, S90K00, 0.036x0.022mm 0.036x0.022mm 1st open meeting **SuperBelle** KEK 12.12.2008 14

Radiation Hardness

Consequences

H.-G. Moser Max-Planck-Institut fuer Physik

 $\Delta p \Delta q \ge \frac{1}{2} t$

rough estimate: $\Delta U_{th} \rightarrow 10\% \Delta q_g$ (min-max, rms should be smaller) Clear performance more critical!

Program:

ASICs deliver large voltage range Operate (whenever possible) at 0V Thinner oxides, optimal nitride/oxide

⇒R&D program for optimized gate dielectric parallel to prototype production

Simulations

 $A_p \Delta_q \ge \pm t$

H.-G. Moser Max-Planck-Institut fuer Physik Alexei Raspereza: Use LDC/LDC software

Implement: Beam pipe DEPFET PXS SVD (no ghosts yet) CDC background

PXD: 2 and 3 layer layout (R_{inner}=1.2cm and 1.7cm)

Mokka is geant4 based framework for full detector simulation LCIO is a persistency framework that defines a common data model Marlin is modular C++ application framework based on LCIO GEAR: one source of geometry. Mokka creates geometry xml files used in Marlin

DEPFET performance

H.-G. Moser Max-Planck-Institut fuer Physik

DEPFET simulation verified/tuned to test beam data

Cluster size in z at low θ can be reduce by variable pitch Z-resolution at large θ can be improved by variable pitch

			_	#r(cm) sensor (cmxcm)	# sensor in z	#ladders (around phi)	thickness (µm)
		two options simulated	ptior	1 1.7	7.1x0.94	2	12	50
st open meetina		$2 \text{ laver } \mathbf{R} = 1.7 \text{ cm}$	14 0	2 2.0	8.4x1.10	2	12	50
Sup	erBelle KEK	$3 \log R = 1.2 \text{ cm}$	-					
12.12.2008	Slayer R _{inner} =1.2 CIII	Б	1 1.2	5.1x0.66	2	12	50	
18	Still not final!	opt	2 1.7	7.1x0.94	2	12	50	
		3 2.0	8.4x1.10	2	12	50		

Impact Parameter Resolution

10

1.2

1.7

2.0

1.6%

0.8%

0.6%

Resolution in r=phi

Impact Parameter Resolution in Presence of Backgrounds

SuperBelle KEK 12.12.2008

19

H.-G. Moser

DEPFET Collaboration

Contact

N. Wermes

S. Lange

P. Fischer

T. Müller

M. Friedl

P. Kodys

H. Palka

C. Lacasta

L. Garrido

E. Cabruja

G. Varner

T. Tsuboyama

I. Vila

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$

J. Riera Babures

M. Chmeissani

P. Vazquez Requeiro

A. Frey

C. Kiesling, H.-G. Moser

List of Institutions contributing to DEPFET @ SuperBelle

Max-Planck-Institute for Physics, Munich

Germany

GIESSEN

MPI

BON University of Bonn Max-Planck-Institut GIE University of Giessen fuer Physik GOF University of Göttingen University of Heidelberg HEI KAR University of Karlsruhe Austria VIE Institute for High Energy Physics (HEPHY), Vienna Czech Rep. PRA Charles-University Prague Poland KRA Institute of Nuclear Physics, Krakow Spain **IFV** Instituto de Fisica Corpuscular (IFIC), Valencia URL University Ramon Llull, Barcelona UBA University of Barcelona CNM Centro Nacional de Microelectronica, Barcelona IFB Instituto de Fisica d'Altes Energies (IFAE), Barcelona USC University of Santiago de Compostela IFC Instituto de Fiisica de Cantabria (IFCA), Santander USA HAW University of Hawaii 1st open meeting **SuperBelle** Japan KEK KEK KEK C. Kiesling, 1st Open Meeting of the SuperKEKB Collaboration 10-12, 2008 12.12.2008 halbleiterlabor JUSTUS-LIEBIG-20 UNIVERSITAT

Workpackages/Organization

H.-G<mark>. Moser</mark> Max-Planck-Institut fuer Physik

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$

1.1	Parameter Definition	MPP/HLL	KRA, PRA
1.2	DEPFET Sensor	MPP/HLL	
1.3	ASIC		
1.3.1	Switcher	HD	
1.3.2	DCD	HD	
1.3.3	DHP	BN	MPP/HLL, UBA, USC, URL
1.3.4	Data Link	BN	MPP/HLL, UBA, USC, URL
1.4	Module Design		
1.4.1	Sensor Ladder (& Interconnection)	MPP/HLL	HD, BN, IFV, CNM, IFB
1.4.2	Kapton Flex	KEK	VIE, BN
1.4.3	DHH (Data Handling Hybrid)		
1.5	Mechanical Design	MPI	KA, VIE, KRA, IFV, IFB
1.6	Thermal Simulation	КА	MPP, VIE, KRA, IVF, IFB
1.7	System		
1.7.1	DAQ	GOE	KRA, GIE, MPP, KEK, URL, HAW
1.7.2	Power & Slow Control	KRA	KEK, USC
1.7.3	Cooling plant	KEK	

Schedule

H.-G. Moser Max-Planck-Institut fuer Physik

 $\Delta p \cdot \Delta g \ge \frac{1}{2} t$

Two DEPFET runs for SuperBelle

First run PXD6: 2009

- -: first DEPFET run on SOI wafers!!
- -: 6 SOI and 2 std. Hi-Res Wafer
- -: top wafer (front side) technology like PXD5
- -: new technology: thinning and BS process
- -: Aim: find optimal design
 - test yield and optimize technology
 - provide devices for all-silicon module

End Spring 2010

SuperBelle Production PXD7: Start 2011

- 1st open meeting SuperBelle KEK 12.12.2008
- -: With improved technology
- -: 20 Wafer? (depends on yield of PXD6)

End Spring 2012

preliminary wafer floor plan for PXD6

Prototype Sensor

Final Sensor

ASICs

Module Production

1st open meeting SuperBelle KEK 12.12.2008 Installation at k

23

Ready: May 2013

Schedule

			-			
	ID	3 Task Name	Duration	Start	Finish	2009 2010 2011 2012 2013 Dtr 2/Otr 3/Otr 4/Otr 1/Otr 2/Otr 3/Otr 4/Otr 1/Otr 2/Otr 3/Otr 4/Otr 1/Otr 2/Otr 3/Otr 4/Otr 1/Otr 2/Otr 3/Otr
	1	1.0 DEPFET Detector	1278 days?	Wed 09/07/08	Fri 31/05/13	
	2	1.1 Parameter Definitions	560 days?	Wed 09/07/08	Tue 31/08/10	↓
	4	1.2 Pixel Sensor	1035 days?	Wed 09/07/08	Tue 26/06/12	
	5	R&D on thin oxides	196 days?	Fri 07/11/08	Fri 07/08/09	
	12	PXD6 Design	188 days?	Wed 09/07/08	Fri 27/03/09	
	13	Layout Deadline (Chip	0 days	Tue 23/12/08	Tue 23/12/08	23/12
	14	Wafer Delivery	0 days	Mon 13/10/08	Mon 13/10/08	
	15	\$OI preparation	55 days	Mon 05/01/09	Fri 20/03/09	
sor	20	PXD6 production	301 days?	Mon 30/03/09	Mon 24/05/10	
501	24	thinning	45 days	Tue 25/05/10	Mon 26/07/10	, v z
	30	PXD6 evaluation	266 days?	Tue 25/05/10	Tue 31/05/11	
	31	fix final module dimens	0 days	Fri 31/07/09	Fri 31/07/09	♦ 31/07
	32	PXD7 Design	70 days?	Tue 23/11/10	Tue 01/03/11	
	33	wafer delivery	0 days	Wed 01/09/10	Wed 01/09/10	♦ 01/09
	34	SOI preparation	55 days	Wed 01/09/10	Tue 16/11/10	*
	39	PXD7 production	301 days?	Tue 01/03/11	Tue 24/04/12	₽_~
	43	thinning	45 days	Wed 25/04/12	Tue 26/06/12	
	49	1.3 ASIC	1058 days?	Wed 09/07/08	Fri 27/07/12	₽
	50	1.3.1 DCD	998 days?	Wed 09/07/08	Fri 04/05/12	
	60	1.3.2 Switcher	1058 days?	Wed 09/07/08	Fri 27/07/12	
	72	1.3.3 DHP	849 days?	Wed 29/10/08	Mon 30/01/12	
	92	1.3.4 Data Link	380 days?	Thu 10/07/08	Wed 23/12/09	
	94	1.4 Module	1175 days?	Wed 09/07/08	Tue 08/01/13	· · · · · · · · · · · · · · · · · · ·
	95	1.4.1 Sensor ladder	1175 days?	Wed 09/07/08	Tue 08/01/13	
ction	105	Module Production	130 days	Wed 27/06/12	Tue 25/12/12	· · · · · · · · · · · · · · · · · · ·
İ	132	1.4.2 Kapton link	859 days?	Wed 09/07/08	Mon 24/10/11	▼▼
	137	1.4.3.DHH	839 days?	Wed 09/07/08	Mon 26/09/11	₽
مانمد	141	1.5 Mechanical Design	1169 days?	Wed 09/07/08	Mon 31/12/12	Ý
onng	145	1.6 Thermal Issues	1170 days?	Wed 09/07/08	Tue 01/01/13	
	149	1.7 System	1278 days?	Wed 09/07/08	Fri 31/05/13	
	158	2.0 Test Systems	849 days?	Tue 01/07/08	Fri 30/09/11	· · · · · · · · · · · · · · · · · · ·
1-11	167	Intergration/Installation	180 days	Wed 19/09/12	Tue 28/05/13	
٢ΕK	168	Installation of 1st layer	3 mons	Wed 19/09/12	Tue 11/12/12	
	169	Installation of 2nd layer	3 mons	Wed 26/12/12	Tue 19/03/13	
	170	service connection	2 wks	Wed 20/03/13	Tue 02/04/13	tt
)13	171	tests & debug	2 mons	Wed 03/04/13	Tue 28/05/13	
	172	System ready at KEK	0 days	Tue 28/05/13	Tue 28/05/13	28/6

Open Questions

Radiation

- => improve on threshold voltage shift
- => dose, spectra, uniformity
- => optimal shielding
- => NIEL damage (particle type, spectra)

Need to know beam pipe radius (outer!) => the smaller the better (for resolution)! => fix at latest mid 2010 (final sensor geometry)

Need to know clearances and envelops at and around IP => mechanics, cooling, routing => temperature of the beam pipe

1st open meeting SuperBelle KEK 12.12.2008 Engineering of mechanics/interface to SVD => PXD should be mounted parallel to beam pipe => same mechanical structure as SVD? => common services (cooling)?

DAQ interface (PXD may deliver up to 70 Gbit/s)

CAPs, SOI:

very promising concepts status: basic R&D important upgrade path for highest luminosity!

DEPFET:

evolving from basic R&D towards production Sensors: one more prototype production in 2009 (convert from ILC to SuperBelle layout) final production in 2011 radiation hardness should be improved

Electronics: prototypes under test (control, readout) digital readout chip in work System: work started Schedule: install in 2013 upgrade after ~5 years (radiation damage, occupancy, smaller beam pipe?)

We propose DEPFET as baseline PXD for superBelle to be discussed in closed session

H.-G. Moser Max-Planck-Institut fuer Physik

 $\Delta q \geq \frac{1}{2} t$