DCPV/Rare

Mikihiko Nakao (KEK IPNS)
December 10, 2008
1st Open Meeting of the SuperKEKB Collaboration

(historically the physics subgroup that covers charmless, electroweak, and other rare decays and their direct CPV has been called the "DCPV/Rare" group in Belle.)

- Inclusive and exclusive $b \rightarrow s \gamma$

Contents

- Inclusive and exclusive $b \rightarrow d \gamma$
- Inclusive and exclusive $b \rightarrow s \ell^{+} \ell^{-}$
- Hadronic rare decays - $К \pi$ puzzle
- Rich program
- Fully inclusive BF and moment measurements
- Direct CP asymmetry
- Isospin asymmetry (exclusive/inclusive)
- Time-dependent CP asymmetry (exclusive)
- More observable sensitive to the photon helicity
- Sensitive to new physics
- Reliable theory calculations are available to compare

$B \rightarrow X_{s} \gamma$ branching fraction

- Now: in agreement with theory within $\sim 1 \sigma$
- Strong constraints on most of new physics models
- Not so easy to reduce the theory error (already NNLO)

Charged Higgs

- Already in the range not easy even at LHC
- Chance to set limit if errors are reduced
- Light H^{+}at LHC \Rightarrow evidence for destructing NP amplitude

$B \rightarrow X_{s} \gamma$ branching fraction

Precise photon energy spectrum is crucial for both the branching fraction and moments

- Now: E_{γ} down to 1.7 GeV
\Leftrightarrow theories are based at 1.6 GeV 3-4 times more data needed
- Now: $\sim 1 \sigma$ for lowest bin 10 times more data needed to make it $\sim 3 \sigma$
- Limited by off-resonance statistics
- More methods (cross checks)

- Tag: lepton-tag, D* ℓv-tag, full-reconstruction tag (better $S / \mathrm{N} \Leftrightarrow$ at a cost of statistics)
- Sum-of-exclusive (good $\sigma\left(E_{\gamma}\right) \Leftrightarrow$ non-uniform ϵ)
- Converted photon (good $\sigma\left(E_{\gamma}\right) \Leftrightarrow$ small ϵ)

Direct CPV in $b \rightarrow s \gamma$

- Sum of exclusive modes (self tag modes)
- Sensitivity estimated in Lol

$$
\delta A_{C P}= \pm 0.009 \text { (stat) } \pm 0.006 \text { (syst) } \quad\left(5 \mathrm{ab}^{-1}\right)
$$

$\delta A_{C P}= \pm 0.00$ 3(stat) ± 0.002 (syst) ± 0.003 (syst) $\left(50 \mathrm{ab}^{-1}\right.$)
based on previous Belle analysis with $140 \mathrm{fb}^{-1}$

- SM prediction
$A_{C P}(\mathrm{SM})=+0.0042+0.0017-0.0012$ (theo)
$50 \mathrm{ab}^{-1}$ is not enough to measure the SM $A_{C P}$
- Fully inclusive (lepton tag asymmetry)
- Cannot distinguish between $b \rightarrow s \gamma$ and $b \rightarrow d \gamma$
- Statistical error ~ 0.06 for $0.6 \mathrm{ab}^{-1}$
$\Rightarrow \sim 0.02$ for $5 \mathrm{ab}^{-1} / \sim 0.006$ for $50 \mathrm{ab}^{-1}$ (stat only)
- Cancelation between $b \rightarrow s \gamma$ and $b \rightarrow d \gamma$ in the SM

Really precision measurement

Isospin asymmetry in $b \rightarrow s \gamma$

- Constraints e.g. on mSUGRA $m_{1 / 2}-m_{0}$ space (Mahmoudi 2007)
- Exclusive $B \rightarrow K^{*} \gamma$
- Precise measurement is possible, provided that K_{S}^{0} and π^{0} efficiency systematic errors are nailed down
- Inclusive $B \rightarrow X_{s} \gamma$

- By-product of sum-of-exclusive $B \rightarrow X_{s} \gamma$ analysis
- By-product of full-reconstruction $\operatorname{tag} B \rightarrow X_{s} \gamma$ analysis

Time-dep. CPV in $B \rightarrow K_{S}^{0} \pi^{0} \gamma$

Now: $\mathcal{S}=-0.10 \pm 0.31 \pm 0.07$ (consistent with null asymmetry)

More time-dependent CPV in $b \rightarrow s \gamma$

- Competition with $\mathrm{LHCb}-B_{s} \rightarrow \phi \gamma$
- \mathcal{S} is already pretty suppressed $\left(\sin \phi_{s}\right.$ is small)
- Coefficient $\left(A^{\Delta}\right)$ to $\sinh \left(\Gamma_{s} / 2\right)$ is sensitive $-\propto \cos \phi_{s}$
- $\sigma\left(A^{\Delta}\right) \sim 0.22$ with $2 \mathrm{fb}^{-1}$ at LHCb (V. Belyaev, CKM2008)
- More modes
- $B \rightarrow K_{S}^{0} \rho^{0} \gamma$ - similar $\delta \mathcal{S}$ as $K^{*} \gamma$
- $B \rightarrow K_{s}^{0} \phi \gamma, B \rightarrow K_{s}^{0} \eta \gamma, \ldots$
- No good theory for three-body radiative decays...

More methods for right-handed current searches

- Photon polarization using photon conversion
- Oscillation in ϕ - very hard to measure ϕ when opening angle is small
- Almost no sensitivity even with $50 \mathrm{ab}^{-1}$
- Photon polarization through triple product asymmetry
- $B^{0} \rightarrow K_{1}(1400) \pi \rightarrow K^{+} \pi^{-} \pi^{0}$ gives $A_{\mathrm{SM}}=0.34 \pm 0.05$ (Gronau et al.2002)
- K_{1} amplitude can be disentangled
- NP signal is the dilution in
 A - hard to distinguish from many other dilution factors
- Similarity to $b \rightarrow s \gamma$ in SM, potential difference in NP (No reason that NP contribution follows the $V_{t d} / V_{t s}$ ratio)
- Exclusive modes: $B \rightarrow \rho \gamma$ and $B \rightarrow \omega \gamma$
- Inclusive analysis as sum-of-exclusives
- Large contribution of annihilation diagram
- Direct CPV and isospin asymmetry could be large and good observables

- Charge averaged branching fraction will not have a big impact on $\left|V_{t d} / V_{t s}\right|$ anymore (large theory error on form factor)
- Direct and isospin asymmetry will be interesting observables (Ali-Lunghi 2002)

(Belle 2008)
$R\left(\rho \gamma / K^{*} \gamma\right)=0.0302_{-0.0055}^{+0.0060}+0.00228$
$A_{\text {CP }}\left(\rho^{+} \gamma\right)=-0.11 \pm 0.32 \pm 0.09$
$\Delta(\rho \gamma)=-0.48_{-0.19}^{+0.21}+0.009$

$B \rightarrow \rho \gamma$ with SuperBelle

- $B \rightarrow \rho \gamma$ is one of the highlights with a big improvement
- Equivalent to $+83 \%$ gain in luminosity in statistics (TOP + ARICH $+d E / d x$, depending on options)
- Huge $B \rightarrow K^{*} \gamma$ background becomes sub-dominant, hopefully reduces systematic error

$B \rightarrow X_{d} \gamma$

- Sum-of-exclusive mode is possible to reconstruct partial set of inclusive $b \rightarrow d \gamma$ (BaBar has already done this)
- BaBar doesn'† provide better $\left|V_{t d} / V_{t s}\right|$ yet, understanding the missing modes and $B \rightarrow X_{s} \gamma$ background are crucial
- Need a Belle analysis to learn how to proceed at SuperBelle

With $5 \mathrm{ab}^{-1}$, no problem in seeing the signal

- Three types of operators $=$ amplitudes $=$ interactions parametrized by Wilson coefficients C_{7}, C_{9} and C_{10}

$$
\begin{aligned}
& \frac{d \Gamma\left(b \rightarrow s \ell^{+} \ell^{-}\right)}{d \hat{s}}=\left(\frac{\alpha_{\mathrm{em}}}{4 \pi}\right)^{2} \frac{\mathrm{G}_{F}^{2} m_{b}^{5}\left|V_{t s}^{*} V_{t b}\right|^{2}}{48 \pi^{3}}(1-\hat{s})^{2} \\
& \times\left[(1+2 \hat{s})\left(\left|C_{9}\right|^{2}+\left|C_{10}\right|^{2}\right)+4\left(1+\frac{2}{\hat{s}}\right)\left|C_{7}\right|^{2}+12 \operatorname{Re}\left(C_{7} C_{9}\right)\right]+\text { corr. }
\end{aligned}
$$

- Wilson coefficients are precisely calculated in the SM
- $\left|C_{7}\right|$ is constrained from $B \rightarrow X_{s} \gamma$,
$s=q^{2}$ dependence to dientangle C_{9}, C_{10} and relative signs

$B \rightarrow K^{*} \ell^{+} \ell^{-}$

- Exclusive mode is easy to reconstruct (also at LHCb) $K^{*} J / \psi$ and $K^{*} \psi^{\prime}$ are excluded (excellent control sample)
- BF is not sensitive to new physics due to theory uncertainty
- Many other observables that are sensitive to new physics, especially as functions of $q^{2}=m^{2}\left(\ell^{+} \ell^{-}\right)$

Forward-backward asymmetry

- $\delta C_{9} \sim 11 \%, \delta C_{10} \sim 13 \%$ at 5 ab $^{-1}$ $\delta C_{9} \sim 4 \%, \delta C_{10} \sim 4 \%$ at $50 \mathrm{ab}^{-1}$ (with some SM based assumptions)

I+I- rest frame

- LHCb will have much bigger statistics for $B \rightarrow K^{* 0} \mu^{+} \mu^{-}$, and good efficiency for small q^{2} (How about systematic error?)
- Ratio $R_{K^{(*)}}=\mathcal{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right) / \mathcal{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)$is sensitive e.g. to mSUGRA Higgs, a large enhancement at large $\tan \beta \sim 45$
- In the SM, $R_{K}=1$ and $R_{K^{*}}=0.75$ (due to photon pole at $q^{2}=0$)
- Belle results
$R_{K}=1.03 \pm 0.21, R_{K^{*}}=0.83 \pm 0.18$ (Belle 2008) are in very good agreement with SM

Now: ~ 20\% error
$\Rightarrow \sim 7 \%$ at $5 \mathrm{ab}^{-1}, \sim 2 \%$ at $50 \mathrm{ab}^{-1}$

(Wang-Atwood 2003)

- Semi-inclusive analysis

$$
\mathcal{B}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)=(4.5 \pm 1.0) \times 10^{-6}
$$

(Belle+BaBar)

- Already systematic error dominated, mostly due to unknown missing modes
- Sensitive to C_{9} and C_{10}
- Forward-backward asymmetry better NP probe than $A_{F B}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)$

$$
\begin{gathered}
B \rightarrow K^{*} \ell^{+} \ell^{-} \\
\text {(Feldmann CKM2008) }
\end{gathered}
$$

$B \rightarrow X_{s} \ell^{+} \ell^{-}$
(Huber et al 2008)

- One of the first charmless hadronic decay modes: $\mathcal{B} \sim O\left(10^{-5}\right)$
- Very simple event topology - easy to reconstruct Four charge combinations $K^{+} \pi^{-}, K^{+} \pi^{0}, K_{S}^{0} \pi^{+}, K_{S}^{0} \pi^{0}$
- Sensitive to $b \rightarrow s$ and $b \rightarrow u$ transitions and phase ϕ_{3}
- Many theory framework to calculate branching fractions and CP asymmetries (QCDF, pQCD, SCET)
- Absolute branching fractions were not well predicted
- $A_{C P}$ were not well predicted ($K \pi$ puzzle)
- Various ratios and relations are believed to hold (old Kr puzzle — resolved by new data)

Direct CPV in $K \pi$

- $B \rightarrow K^{+} \pi^{-}$and $B \rightarrow K^{+} \pi^{0}$ have common $b \rightarrow s$ penguin and $b \rightarrow u$ tree to generate direct CPV
- Differences in sub-leading diagrams: EW penguin and color suppressed tree
- At least within factorizationbased theories, no large difference is expected

$$
\begin{aligned}
& A_{C P}\left(K^{+} \pi^{-}\right)=-0.094 \pm 0.018 \pm 0.008 \\
& A_{C P}\left(K^{+} \pi^{0}\right)=+0.07 \pm 0.03 \pm 0.01 \text { (Belle 2008) }
\end{aligned}
$$

Opposite sign in $B^{0} \rightarrow K \pi$ and $B^{+} \rightarrow K \pi$

- $K \pi$ puzzle as long as no theory reliably predicts this difference

Sum rule

(Gronau 2005)
$A_{C P} \times \Gamma\left(K^{+} \pi^{-}\right)+A_{C P} \times \Gamma\left(K^{0} \pi^{+}\right)=2 A_{C P} \times \Gamma\left(K^{+} \pi^{0}\right)+2 A_{C P} \times \Gamma\left(K^{0} \pi^{0}\right)$
$A_{C P}\left(K^{0} \pi^{0}\right)_{\text {sumrule }}=-0.146 \pm 0.041 \Leftrightarrow A_{C P}\left(K^{0} \pi^{0}\right)_{\text {measured }}=+0.01 \pm 0.10$

- $A_{C P}\left(K^{0} \pi^{0}\right)$ is statistical error dominated, a large integrated luminosity brings down the error
- All the other measurements are (will be) systematic error dominated

Assumption: systematic error could be halved with $10 \mathrm{ab}^{-1}$

Belle vs SuperBelle

Gear change: $O(1)$ deviation search $\boldsymbol{A}(5 \%)$ deviation search

- Many of the rare decays at $O\left(10^{-5}\right)-O\left(10^{-6}\right)$, have been suitable for discovery at Belle ($b \rightarrow s, b \rightarrow u$ and $b \rightarrow d$)
- However, Belle's luminosity is not sufficient for precision measurements
- Only SuperBelle allows us precision (i.e., meaningful) measurements
- Need equally qualified theory, useful decay modes are limited
- Finding a few of yet-to-be-discovered rare decays would not be so interesting

List of more modes

- $B \rightarrow \pi \ell^{+} \ell^{-}$and $B \rightarrow \rho \ell^{+} \ell^{-}$
- $\left.B \rightarrow K^{(*)}\right)_{\bar{v}}$
- $B \rightarrow \gamma \gamma$
- $B \rightarrow \phi \phi$
- $B^{+} \rightarrow K^{+} K^{+} \pi^{-}$(doubly strange)
- $B \rightarrow$ charmless 3-body decays (Dalitz analysis)
- $B \rightarrow$ charmless vector-vector final states
- $B \rightarrow$ charmless modes with η and η^{\prime}
- Lepton flavor violating modes such as $B \rightarrow X e \mu$
-

Problem: we do not have a good theory guideline for hadronic decay modes

Summary and Comments

- More emphasis on inclusive (and sum-of-exclusive) analysis
- Many potential measurements to probe NP
- More data improves our understanding of backgrounds
- Need to spend more time on systematic errors
- There have been too many modes to work on and had not really time to concentrate on systematic errors
- More off-resonance data would be preferable
- 10% has been the limiting factor for $b \rightarrow s \gamma$, and too small for any other continuum background studies How about 20\%? (i.e., ON : OFF = 4 : 1)
- Better control on B background if one can fix the shape and size of continuum in a sum-of-exclusive analysis
- PID and pixel detector
- Need to develop analysis to exploit their performance, e.g. in continuum background suppression

