$egin{aligned} B_{(c)} &
ightarrow au arepsilon: ext{Complementarity at} \ & ext{SuperB, LHC and LC} \ & ext{(+ issues in } B 
ightarrow \pi K) \end{aligned}$ 

Stefan Recksiegel

TU München

SuperBelle Meeting, KEK, December 10th, 2008  $egin{aligned} B_{(c)} &
ightarrow au 
u : Complementarity at \ \mathbf{SuperB}, \ \mathbf{LHC} \ \mathbf{and} \ \mathbf{LC} \ (+ \ \mathrm{issues} \ \mathrm{in} \ B 
ightarrow \pi K) \end{aligned}$ 

Stefan Recksiegel

from: TU München

speaking at: KEK

# R Parity violating enhancement of $B^+_u \to \ell^+ \nu$ and $B^+_c \to \ell^+ \nu$

Stefan Recksiegel KEK Theory Group

LMU München

July 17th, 2002



#### Contents

- Introduction
- $B_q^+ \to \ell^+ \nu_\ell$  in the SM and 2HDMs
- Limits on  $\tan \beta / M_H$
- $B^+_{u/c} \to \tau^+ \nu_{\tau}$  at  $\Upsilon(4S)$  and the Z peak
- The  $B \to \pi K$  puzzles
- Conclusions

- A. G. Akeroyd and S.R., J. Phys. G **29**, 2311 (2003)
- A. G. Akeroyd, C. H. Chen and S.R., Phys. Rev. **D77**, 115018 (2008)
- A. Buras, R. Fleischer, S.R. and F. Schwab, 2003-2006
- R. Fleischer, S.R. and F. Schwab, Eur. Phys. J. C 51, 55 (2007)

Why study  $B \to \tau \nu$  ?

 $\rightarrow$  Suppressed in SM and clean (only  $f_B$  appears, no FFs).

Processes that are suppressed in the SM are excellent probes to look for New Physics, because they are not necessarily also suppressed in NP !

(This is why  $b \to s\gamma$ ,  $B_0 - \bar{B}_0$  mixing,  $K \to \pi \nu \bar{\nu}$ , etc. draw so much attention and why they are so good in constraining NP models.)

 $B \to \tau \nu$  is suppressed so much because coupling to W is left-handed  $\to$  need spin-flip for the lepton  $\to$  factor  $m_{\ell}$ 

Standard Model rate for  $B_q^+ \to \ell^+ \nu_\ell$ :

$$\Gamma(B_q^+ \to \ell^+ \nu_\ell) = \frac{G_F^2 m_{B_q} m_l^2 f_{B_q}^2}{8\pi} |V_{qb}|^2 \left(1 - \frac{m_l^2}{m_{B_q}^2}\right)^2$$

Helicity suppression: BR is proportional to  $m_l^2$ , expect:

$$BR(B_q^+ \to \tau^+ \nu_{\tau}) : BR(B_q^+ \to \mu^+ \nu_{\mu}) : BR(B_q^+ \to e^+ \nu_e) = m_{\tau}^2 : m_{\mu}^2 : m_e^2$$

Experimentally,

$$BR(B^{\pm} \to \tau^{\pm} \nu_{\tau}) = (1.70 \pm +0.42) \times 10^{-4} \quad (BELLE-CONF-0840)$$
$$= (1.20 \pm 0.40 \pm 0.36) \times 10^{-4} \quad (BaBar)$$

In agreement with the SM expectations, central values are ( $\tau$ )  $1.23 \times 10^{-4}$  : ( $\mu$ )  $5.51 \times 10^{-7}$  : (e)  $1.29 \times 10^{-11}$ 

(Experimental imits on  $e, \mu$  channels are  $1, 1.3 \times 10^{-6}$ , respectively.)

#### New Physics: 2HDM

The SM has only **one** Higgs doublet

 $\rightarrow$  masses for the gauge bosons and quarks, one physical particle.

Many other theories have two Higgs doublets (2HDM)

(SUSY needs two to provide masses to up- and down-quarks)

 $\rightarrow$  not one but four extra particles

 $h^0$  has SM-like couplings  $m_f/v$ ,  $H^0$ ,  $A^0$  and  $H^{\pm}$  couplings are scaled by  $\tan \beta$  for down-type fermions (type-II 2HDM)

 $(\tan\beta \text{ is ratio of Higgs VEVs})$ 

Let's look at this in a bit more detail:

Fermion Mass terms in the SM

$$\mathcal{L}_{\text{Yukawa}} = -\Gamma_{u}^{ij} \bar{Q}_{L}^{i} \phi^{c} u_{R}^{j} - \Gamma_{d}^{ij} \bar{Q}_{L}^{i} \phi d_{R}^{j} - \Gamma_{e}^{ij} \bar{L}_{L}^{i} \phi l_{R}^{j} + \text{h.c.}$$

( $\Gamma_f$  are coupling matrices,  $Q_L^i$  and  $L_L^i$  are left-handed doublets,  $u_R^j, d_R^j, l_R^j$  are right-handed singlets)

The same scalar field gives the masses to u-type and d-type fermions

2HDM models:

$$\mathcal{L}_{\text{Yukawa}} = -\sum_{k=1,2} \Gamma_u^{ij,k} \bar{Q}_L^i \phi_k^c u_R^j - \sum_{k=1,2} \Gamma_d^{ij,k} \bar{Q}_L^i \phi_k d_R^j \quad +\text{leptons} \quad +\text{h.c.}$$

 $(\phi_1 \text{ and } \phi_2 \text{ are the two Higgs fields})$ 

Generally, arbitrary couplings to the two Higgs fields possible ! ("type-III 2HDM model")

#### Problem: FCNC

Solution: Either *u*-type and *d*-type quarks both couple to same  $\phi \rightarrow$  "type-I 2HDM"

or *u*-type couple to  $\phi_1$  and *d*-type couple to  $\phi_2$  (e.g. SUSY)  $\rightarrow$  "type-II 2HDM"

SUSY: Several more relations, among them:  $M_h^2 \le M_Z^2$  at tree level  $\rightarrow$  obviously broken.

Loop corrections can relax bound to  $M_h^{\rm max} \approx 135 {\rm GeV}$ .

Important parameter: Ratio of VEVs of the two doublets

$$\tan\beta = v_1/v_2$$

Remember: In type-II,  $\phi_1 \rightarrow u$ -type masses,  $\phi_2 \rightarrow d$ -type masses Large  $\tan \beta \sim m_t/m_b$  allows top and bottom Yukawa coupling unification !

Isidori/Mescia/Paradisi/Temes 2007

MSSM at large  $\tan \beta$ :

- Interesting effects on  $B \to \tau \nu$
- Enhancement of  $(g-2)_{\mu}$  in accordence with exp
- No large non-SM effects is  $\Delta M_{B_s}$  and  $b \to s\gamma$
- $b \to s \,\ell^+ \ell^-$  can be strongly enhanced, but can be made compatible with experiment in parts of MSSM parameter space

$$B^+_q o \ell^+ 
u_\ell ext{ in 2HDMs}$$

Why are there interesting effects in  $B^{\pm} \rightarrow \ell^{+} \nu_{\ell}$  ?



 $H^{\pm}$  can mediate  $B^{\pm} \to \ell^+ \nu_{\ell}$  !

Factor  $m_{\ell}$  also present, but now Yukawa, not helicity-flip.  $\rightarrow \tan \beta$  enhancement

Hou 1992, Du/Jin/Yang 1997

Effect of  $H^{\pm}$  on  $B^{\pm} \to \ell^+ \nu_{\ell}$  modifies SM expression by factor  $r_H^q$ 

$$r_{H}^{q} = \left[1 - \frac{\tan^{2}\beta}{M_{H^{\pm}}^{2}}\right]^{2} \equiv [1 - R^{2}M_{B_{q}}]^{2}$$

 $\tan \beta \gg 1$  phenomenologically attractive, significant contribution possible !

But: destructive interference, decreasing BR for small NP contribution.



(Hou:  $\tan \beta < 0.52 \, m_{H^-} / 1 \text{GeV}$  for  $BR(B \to \mu \nu) < 10^{-5}$  in 1992)



We plot the  $M_{H^{\pm}}$ -tan $\beta$  plane:

Green: Allowed with 1- $\sigma$  experimental range,  $f_B$ , BR<sub>exp</sub> are varied in their 1- $\sigma$  ranges (multiple lines)

(For clarity, we do not show areas excluded due to direct Higgs searches)

Why two allowed areas ? Let's look at this in 3D !



Green lines: 1- $\sigma$  experimental range  $\rightarrow$  allowed area

Buras/Chankowski/Rosiek/Slawianowska 2002 D'Ambrosio/Giudice/Isidori/Strumia 2002 Akeroyd/SR 2003

Additional modification: vertex corrections, mainly gluino



(A similar correction term can be generated at tree-level in type-III 2HDMs)

Itoh/Komine/Okada 2005

Isidori/Paradisi 2006, Chen/Geng 2006

 $\tilde{\epsilon}_0 \sim 10^{-2}$  is expected in MSSM

 $\tilde{\epsilon}_0 < 0$  would be possible, but would involve  $\mu < 0$  which moves

g-2 into the wrong direction

Still, let's look at what  $\tilde{\epsilon}_0 = (0, \pm 10^{-2})$  does ...



 $f_B$ , BR<sub>exp</sub> are varied in their 1- $\sigma$  ranges (multiple lines)  $\rightarrow$  very moderate dependence on  $f_B$ , BR<sub>exp</sub>, but  $\tilde{\epsilon}_0$  very important !

#### $B_u \rightarrow \tau \nu$ and 2HDMs

- We finally have a measurement of  $B_u \to \tau \nu$
- In 2HDMs,  $H^+$  contributions strongly modify  $B \to \tau \nu$  $\to B_u \to \tau \nu$  constrains parameter space of 2HDMs !
- Loop corrections (or even tree in type-III) can break the clean constraints in the  $M_{H^{\pm}}$ -tan  $\beta$  plane
- Careful when relating measurement  $\leftrightarrow$  constraints!



$$B_c o au 
u$$

 $B_c$  not studied too well, cannot be produced in B factories LEP had  $B_c$  in their samples  $\rightarrow$  how many ?  $\Rightarrow$  do they influence the tan $\beta/M_H$ -limits ?

Transition probability:  $\approx 38\%$  of *b*-quarks hadronize into  $B_u^{\pm}$ ,

 $2 \cdot 10^{-4} - 5 \cdot 10^{-3}$  hadronize into  $B_c^{\pm}$ 

 $\rightarrow$  let us look a bit closer at that number

#### Lisignoli/Masetti/Petrarca 1991

#### HERWIG Monte Carlo study:

$$F_{b\to B_c} \sim \begin{bmatrix} 0.2 - 1.0 \cdot 10^{-3} & \text{@LEP} \\ 1.3 \cdot 10^{-3} & \text{@Tevatron} \end{bmatrix}$$

CDF 1998

CDF: "Observation of  $B_c$  in  $p\bar{p}$ ":  $F_{b\to B_c} = 1.3 \cdot 10^{-3}$ Data still significantly on the high side of theoretical predictions



CDF 1998:

$$\frac{\sigma(B_c^+) \cdot \text{BR}(B_c \to J/\psi e^{\pm}\nu)}{\sigma(B^+) \cdot \text{BR}(B \to J/\psi K^+)} = 0.13 \pm 0.05$$

CDF/D0 2006:

$$\frac{\sigma(B_c^+) \cdot \text{BR}(B_c \to J/\psi e^{\pm}\nu)}{\sigma(B^+) \cdot \text{BR}(B \to J/\psi K^+)} = 0.28 \pm 0.07$$



Gershtein/Likhoded 07

Using CDF/D0 branching fractions for  $B \to J/\psi K^{\pm}$  and  $B_c \to J/\psi e^{\pm}\nu$ , G/L claim that  $B_c$  production is "an order of magnitude higher" than theoretical predictions

$$F_{b \to B_c} = 1 \cdot 10^{-3} - 5 \cdot 10^{-3}$$

### Analyses of $B \to \tau \nu$ before $B_u$ channel measurement

L3 97

L3 gave a limit on  $B_u \to \tau \nu$ : (actually:  $B_u \to \tau \nu + B_c \to \tau \nu$ ) BR $(B_u \to \tau \nu) < 5.7 \cdot 10^{-4} @ 90 \%$  CL (i.e.  $\approx 3.5$  SM).

With this result, they improved Hou's '93 limit  $(\tan \beta \le 0.52 m_{H^-}/1 \text{GeV})$  to  $\tan \beta \le 0.38 m_{H^-}/1 \text{GeV}$ 

Mangano/Slabopitsky 97

took into account  $B_c$  contribution in L3 analysis ! Assumed  $2 \cdot 10^{-4} - 1 \cdot 10^{-3}$  for  $F_{b \to B_c}$ , studied limits on  $\tan \beta / M_H$ .

 $\rightarrow \quad \tan\beta \le 0.3 x \ m_{H^-} / 1 \text{GeV}, \quad 0 \le x \le 7$ 

 $\rightarrow$  slightly better than original L3 analysis (0.38)

 $\rightarrow$  better than original Hou '92 (0.52)

right line: L3 original  $(\tan \beta \le 0.38 m_{H^-}/1 \text{GeV})$ left line: Mangano/Slabopitsky very optimistic:  $\tan \beta \le 0.27 m_{H^-}/1 \text{GeV}$ Hou limit would be almost exactly diagonal. (NB: flipped w.r.t. my plots)



Mangano/Slabopitsky 97

#### What does the $B_u \rightarrow \tau \nu$ measurement change ?

- We now have a measurement of  $B_u \to \tau \nu$  from the *B* factories, therefore L3 result not interesting anymore for  $\tan \beta / M_H$ -limits
- But:  $B_{u/c} \to \tau \nu$  at Z peak still interesting ?
- What does L3 (or any other experiment at the Z peak) actually measure ?

$$BR_{eff} = BR(B^{\pm} \to \tau^{\pm}\nu) \left(1 + \frac{N_c}{N_u}\right)$$
$$\frac{N_c}{N_u} = \left|\frac{V_{cb}}{V_{ub}}\right|^2 \frac{F_{b\to B_c^{\pm}}}{F_{b\to B^{\pm}}} \left(\frac{f_{B_c}}{f_B}\right)^2 \frac{M_{B_c}}{M_B} \frac{\tau_{B_c}}{\tau_B} = 0.35 - 1.0 \cdot \frac{F_{b\to B_c}}{10^{-3}}$$

 $\rightarrow$  For  $F_{b\rightarrow B_c} \sim 10^{-3}$ , there can be one  $B_c$  event for each  $B_u$  event!

Significant  $B_c$  contribution to  $B \to \tau \nu$  at Z peak!

- There is a surprisingly large number of  $B_c^+ \to \tau^+ \nu$  in the  $B^+ \to \tau^+ \nu$  signal at the Z peak!
- Also important: " $\epsilon$ -corrections":



- Different corrections for  $B_u$  and  $B_c$  are possible, important to know both  $B_u^+ \to \tau^+ \nu$  and  $B_c^+ \to \tau^+ \nu$  rate !
- If SM is assumed: Use Z peak measurement to determine  $F_{b\to B_c}$  !  $\rightarrow$  Understand  $B_c$  production

#### Conclusions $(B \rightarrow \tau \nu)$

- $B \rightarrow \tau \nu$  is a very interesting decay channel, small in the SM, strongly modified by New Physics
- 2HDMs modify  $B \to \tau \nu \Rightarrow B \to \tau \nu$  constraints 2HDMs (and other NP models)
- Very good complementarity between  $\Upsilon(4S)$  and Z peak  $(B_c \to \tau \nu)$  !
- Need to know both channels ( $\epsilon$ -corrections)
- Please measure  $B \to \mu \nu$ ! BaBar's limit is 30% better ...

# $B o \pi K$

#### Why $B \to \pi K$ ?

The thing that intrigued the theorists:

- Those observables that had small electroweak (EW) contributions were as expected
- Observables with large EW corrections did not agree with expectations
- EW sector is where new physics would be expected !

#### Feynman diagrams for $B \to \pi \pi, B \to \pi K$



tree diagram

penguin diagram

Colour-suppressed tree diagrams have the same topology as the QCD penguin diagrams, electroweak penguin diagrams have the same topology as tree diagrams.

 $(P/T)_{K\pi}/(P/T)_{\pi\pi} \sim (V_{cs}/V_{us})/(V_{cd}/V_{ud})_{\pi\pi} \sim 1/\lambda^2.$ 

 $\implies B \rightarrow \pi\pi$  is tree-dominated,  $B \rightarrow K\pi$  is penguin-dominated.

2004



#### The approach:

i) SU(3) flavour symmetry

SU(3)-breaking effects are, however, included through ratios of decay constants and form factors. Also: sensitivity of the numerical results on non-factorizable SU(3)-breaking effects is explored.

- ii) Neglect of the penguin annihilation and exchange topologiesStrategy:
  - i) Use experimental data on BRs and asymmetries in  $B \to \pi \pi$  to determine  $\pi \pi$  hadronic parameters
- ii) With SU(3), transform these to  $\pi K$  hadronic parameters
- iii) Calculate all  $\pi K$  observables, compare with experiment

The  $B \to \pi K$  puzzle has been around for a while, already in 2000 it was observed that the CLEO data exhibited a puzzling pattern.





Situation in the  $R_c$  and  $R_n$  plane:



Experimental data has moved towards theory, no more puzzle.

Later (~ 2006):  $R_{\rm c}$ - $R_{\rm n}$  puzzle almost solved, but some asymmetries still puzzling. E.g.:  $\mathcal{A}_{\rm CP}^{\rm mix}(B_d \rightarrow \pi^0 K_{\rm S})$  predicted ~ -0.9 but experiment ~ -0.3.



Also (almost) resolved, both theory and experiment have moved !  $(\Delta A \equiv \mathcal{A}_{CP}^{dir}(B^{\pm} \to \pi^{0}K^{\pm}) - \mathcal{A}_{CP}^{dir}(B_{d} \to \pi^{\mp}K^{\pm}) \neq 0$  is a hadronic effect.)

## Conclusions $(B \rightarrow \pi K \text{ puzzle})$

- $B \to \pi K$  is very interesting because (unlike  $B \to \pi \pi$ ) it is penguin dominated ( $\to$  room for New Physics)
- People were excited about the  $B \to \pi K$  puzzle because the observables with large EW contributions (where new physics would be expected were peculiar. Also, QCD factorisation does not work as well as originally assumed.
- Improved experimental data and improved theory now give a consistent picture.