$\boldsymbol{B}_{(c)} \rightarrow \tau \nu:$ Complementarity at SuperB, LHC and LC
 $(+$ issues in $B \rightarrow \pi K)$

Stefan Recksiegel

TU München

SuperBelle Meeting, KEK,
December 10th, 2008

$B_{(c)} \rightarrow \tau \nu$: Complementarity at SuperB, LHC and LC
 (+ issues in $B \rightarrow \pi K$)

Stefan Recksiegel

from: TU München
speaking at: KEK

R Parity violating enhancement of $B_{u}^{+} \rightarrow \ell^{+} \nu$ and $B_{c}^{+} \rightarrow \ell^{+} \nu$

Stefan Recksiegel
KEK Theory Group

LMU München

July 17th, 2002

Contents

- Introduction
- $B_{q}^{+} \rightarrow \ell^{+} \nu_{\ell}$ in the SM and 2 HDMs
- Limits on $\tan \beta / M_{H}$
- $B_{u / c}^{+} \rightarrow \tau^{+} \nu_{\tau}$ at $\Upsilon(4 S)$ and the Z peak
- The $B \rightarrow \pi K$ puzzles
- Conclusions
- A. G. Akeroyd and S.R., J. Phys. G 29, 2311 (2003)
- A. G. Akeroyd, C. H. Chen and S.R., Phys. Rev. D77, 115018 (2008)
- A. Buras, R. Fleischer, S.R. and F. Schwab, 2003-2006
- R. Fleischer, S.R. and F. Schwab, Eur. Phys. J. C 51, 55 (2007)

Why study $B \rightarrow \tau \nu$?
\rightarrow Suppressed in SM and clean (only f_{B} appears, no FFs).
Processes that are suppressed in the SM are excellent probes to look for New Physics, because they are not necessarily also suppressed in NP!
(This is why $b \rightarrow s \gamma, B_{0}-\bar{B}_{0}$ mixing, $K \rightarrow \pi \nu \bar{\nu}$, etc. draw so much attention and why they are so good in constraining NP models.)

$$
B_{q}^{+} \rightarrow \ell^{+} \nu_{\ell}
$$

$B \rightarrow \tau \nu$ is suppressed so much because coupling to W is left-handed \rightarrow need spin-flip for the lepton \rightarrow factor m_{ℓ}

Standard Model rate for $B_{q}^{+} \rightarrow \ell^{+} \nu_{\ell}$:

$$
\Gamma\left(B_{q}^{+} \rightarrow \ell^{+} \nu_{\ell}\right)=\frac{G_{F}^{2} m_{B_{q}} m_{l}^{2} f_{B_{q}}^{2}}{8 \pi}\left|V_{q b}\right|^{2}\left(1-\frac{m_{l}^{2}}{m_{B_{q}}^{2}}\right)^{2}
$$

Helicity suppression: BR is proportional to m_{l}^{2}, expect:

$$
B R\left(B_{q}^{+} \rightarrow \tau^{+} \nu_{\tau}\right): B R\left(B_{q}^{+} \rightarrow \mu^{+} \nu_{\mu}\right): B R\left(B_{q}^{+} \rightarrow e^{+} \nu_{e}\right)=m_{\tau}^{2}: m_{\mu}^{2}: m_{e}^{2}
$$

Experimentally,

$$
\begin{aligned}
\mathrm{BR}\left(B^{ \pm} \rightarrow \tau^{ \pm} \nu_{\tau}\right) & =(1.70 \pm+0.42) \times 10^{-4} \\
& =(1.20 \pm 0.40 \pm 0.36) \times 10^{-4} \quad(\mathrm{BELLE}
\end{aligned} \quad(\mathrm{BaBar})
$$

In agreement with the SM expectations, central values are
$(\tau) 1.23 \times 10^{-4}:(\mu) 5.51 \times 10^{-7}:(e) 1.29 \times 10^{-11}$
(Experimental imits on e, μ channels are $1,1.3 \times 10^{-6}$, respectively.)

New Physics: 2HDM

The SM has only one Higgs doublet
\rightarrow masses for the gauge bosons and quarks, one physical particle.
Many other theories have two Higgs doublets (2HDM) (SUSY needs two to provide masses to up- and down-quarks)
\rightarrow not one but four extra particles
h^{0} has SM-like couplings $m_{f} / v, H^{0}, A^{0}$ and $H^{ \pm}$couplings are scaled by $\tan \beta$ for down-type fermions (type-II 2HDM)
($\tan \beta$ is ratio of Higgs VEVs)

Let's look at this in a bit more detail:
Fermion Mass terms in the SM

$$
\mathcal{L}_{\text {Yukawa }}=-\Gamma_{u}^{i j} \bar{Q}_{L}^{i} \phi^{c} u_{R}^{j}-\Gamma_{d}^{i j} \bar{Q}_{L}^{i} \phi d_{R}^{j}-\Gamma_{e}^{i j} \bar{L}_{L}^{i} \phi l_{R}^{j} \quad+\text { h.c. }
$$

(Γ_{f} are coupling matrices, Q_{L}^{i} and L_{L}^{i} are left-handed doublets, $u_{R}^{j}, d_{R}^{j}, l_{R}^{j}$ are right-handed singlets)

The same scalar field gives the masses to u-type and d-type fermions

2HDM models:
$\mathcal{L}_{\text {Yukawa }}=-\sum_{k=1,2} \Gamma_{u}^{i j, k} \bar{Q}_{L}^{i} \phi_{k}^{c} u_{R}^{j}-\sum_{k=1,2} \Gamma_{d}^{i j, k} \bar{Q}_{L}^{i} \phi_{k} d_{R}^{j} \quad$ +leptons \quad +h.c.
(ϕ_{1} and ϕ_{2} are the two Higgs fields)
Generally, arbitrary couplings to the two Higgs fields possible! ("type-III 2HDM model")

Problem: FCNC

Solution: Either u-type and d-type quarks both couple to same ϕ \rightarrow "type-I 2HDM"
or u-type couple to ϕ_{1} and d-type couple to ϕ_{2} (e.g. SUSY)
\rightarrow "type-II 2HDM"

SUSY: Several more relations, among them: $M_{h}^{2} \leq M_{Z}^{2}$ at tree level \rightarrow obviously broken.
Loop corrections can relax bound to $M_{h}^{\max } \approx 135 \mathrm{GeV}$.

Important parameter: Ratio of VEVs of the two doublets

$$
\tan \beta=v_{1} / v_{2}
$$

Remember: In type-II, $\phi_{1} \rightarrow u$-type masses, $\phi_{2} \rightarrow d$-type masses Large $\tan \beta \sim m_{t} / m_{b}$ allows top and bottom Yukawa coupling unification!

MSSM at large $\tan \beta$:

- Interesting effects on $B \rightarrow \tau \nu$
- Enhancement of $(g-2)_{\mu}$ in accordence with exp
- No large non-SM effects is $\Delta M_{B_{s}}$ and $b \rightarrow s \gamma$
- $b \rightarrow s \ell^{+} \ell^{-}$can be strongly enhanced, but can be made compatible with experiment in parts of MSSM parameter space

$B_{q}^{+} \rightarrow \ell^{+} \nu_{\ell}$ in 2 HDMs

Why are there interesting effects in $B^{ \pm} \rightarrow \ell^{+} \nu_{\ell}$?

$H^{ \pm}$can mediate $B^{ \pm} \rightarrow \ell^{+} \nu_{\ell}!$
Factor m_{ℓ} also present, but now Yukawa, not helicity-flip.
$\rightarrow \tan \beta$ enhancement

Hou 1992, Du/Jin/Yang 1997
Effect of $H^{ \pm}$on $B^{ \pm} \rightarrow \ell^{+} \nu_{\ell}$ modifies SM expression by factor r_{H}^{q}

$$
r_{H}^{q}=\left[1-\tan ^{2} \beta \frac{M_{B_{q}}^{2}}{M_{H^{ \pm}}^{2}}\right]^{2} \equiv\left[1-R^{2} M_{B_{q}}\right]^{2}
$$

$\tan \beta \gg 1$ phenomenologically attractive, significant contribution possible!

But: destructive interference, decreasing BR for small NP contribution.

(Hou: $\tan \beta<0.52 m_{H^{-}} / 1 \mathrm{GeV}$ for $B R(B \rightarrow \mu \nu)<10^{-5}$ in 1992)

We plot the $M_{H^{ \pm-}} \tan \beta$ plane:

Green: Allowed with 1- σ experimental range, $f_{B}, \mathrm{BR}_{\exp }$ are varied in their $1-\sigma$ ranges (multiple lines)
(For clarity, we do not show areas excluded due to direct Higgs searches)

Why two allowed areas? Let's look at this in 3D !

Green lines: 1- σ experimental range \rightarrow allowed area

D'Ambrosio/Giudice/Isidori/Strumia 2002
Akeroyd/SR 2003
Additional modification: vertex corrections, mainly gluino

$$
r_{H}=\left(1-\frac{\tan ^{2} \beta}{1+\tilde{\epsilon}_{0} \tan \beta} \frac{m_{B}^{2}}{m_{H^{ \pm}}^{2}}\right)^{2}
$$

(A similar correction term can be generated at tree-level in type-III 2HDMs)

Itoh/Komine/Okada 2005
Isidori/Paradisi 2006, Chen/Geng 2006
$\tilde{\epsilon}_{0} \sim 10^{-2}$ is expected in MSSM
$\tilde{\epsilon}_{0}<0$ would be possible, but would involve $\mu<0$ which moves $g-2$ into the wrong direction

Still, let's look at what $\tilde{\epsilon}_{0}=\left(0, \pm 10^{-2}\right)$ does \ldots

$f_{B}, \mathrm{BR}_{\exp }$ are varied in their 1- σ ranges (multiple lines)
\rightarrow very moderate dependence on $f_{B}, \mathrm{BR}_{\exp }$,
but $\tilde{\epsilon}_{0}$ very important!

$B_{u} \rightarrow \tau \nu$ and 2 HDMs

- We finally have a measurement of $B_{u} \rightarrow \tau \nu$
- In $2 \mathrm{HDMs}, H^{+}$contributions strongly modify $B \rightarrow \tau \nu$ $\rightarrow B_{u} \rightarrow \tau \nu$ constrains parameter space of 2 HDMs !
- Loop corrections (or even tree in type-III) can break the clean constraints in the $M_{H^{ \pm}-\tan } \beta$ plane
- Careful when relating measurement \leftrightarrow constraints!

$$
B_{c} \rightarrow \tau \nu
$$

B_{c} not studied too well, cannot be produced in B factories
LEP had B_{c} in their samples \rightarrow how many ?
\Rightarrow do they influence the $\tan \beta / M_{H}$-limits ?

Transition probability: $\approx 38 \%$ of b-quarks hadronize into $B_{u}^{ \pm}$,
$2 \cdot 10^{-4}-5 \cdot 10^{-3}$ hadronize into $B_{c}^{ \pm}$
\rightarrow let us look a bit closer at that number
$F_{b \rightarrow B_{c}}$
Lisignoli/Masetti/Petrarca 1991
HERWIG Monte Carlo study:

$$
\begin{aligned}
& F_{b \rightarrow B_{c}} \sim \\
& \begin{array}{cl}
0.2-1.0 \cdot 10^{-3} & @ L E P \\
1.3 \cdot 10^{-3} & @ \text { Tevatron }
\end{array}
\end{aligned}
$$

CDF 1998
CDF: "Observation of B_{c} in $p \vec{p} ": F_{b \rightarrow B_{c}}=1.3 \cdot 10^{-3}$
Data still significantly on the high side of theoretical predictions

CDF 1998:

$$
\frac{\sigma\left(B_{c}^{+}\right) \cdot \operatorname{BR}\left(B_{c} \rightarrow J / \psi e^{ \pm} \nu\right)}{\sigma\left(B^{+}\right) \cdot \operatorname{BR}\left(B \rightarrow J / \psi K^{+}\right)}=0.13 \pm 0.05
$$

CDF/D0 2006:

$$
\frac{\sigma\left(B_{c}^{+}\right) \cdot \operatorname{BR}\left(B_{c} \rightarrow J / \psi e^{ \pm} \nu\right)}{\sigma\left(B^{+}\right) \cdot \operatorname{BR}\left(B \rightarrow J / \psi K^{+}\right)}=0.28 \pm 0.07
$$

Gershtein/Likhoded 07
Using CDF/D0 branching fractions for $B \rightarrow J / \psi K^{ \pm}$and $B_{c} \rightarrow J / \psi e^{ \pm} \nu, \mathrm{G} / \mathrm{L}$ claim that B_{c} production is "an order of magnitude higher" than theoretical predictions

$$
F_{b \rightarrow B_{c}}=1 \cdot 10^{-3}-5 \cdot 10^{-3}
$$

Analyses of $B \rightarrow \tau \nu$ before B_{u} channel measurement

L3 gave a limit on $B_{u} \rightarrow \tau \nu$: (actually: $B_{u} \rightarrow \tau \nu+B_{c} \rightarrow \tau \nu$)
$\mathrm{BR}\left(B_{u} \rightarrow \tau \nu\right)<5.7 \cdot 10^{-4} @ 90 \% \mathrm{CL}($ i.e. $\approx 3.5 \mathrm{SM})$.
With this result, they improved Hou's '93 limit $\left(\tan \beta \leq 0.52 m_{H^{-}} / 1 \mathrm{GeV}\right)$ to $\tan \beta \leq 0.38 m_{H^{-}} / 1 \mathrm{GeV}$

Mangano/Slabopitsky 97
took into account B_{c} contribution in L3 analysis !
Assumed $2 \cdot 10^{-4}-1 \cdot 10^{-3}$ for $F_{b \rightarrow B_{c}}$, studied limits on $\tan \beta / M_{H}$.

$$
\rightarrow \quad \tan \beta \leq 0.3 x m_{H^{-}} / 1 \mathrm{GeV}, \quad 0 \leq x \leq 7
$$

\rightarrow slightly better than original L3 analysis (0.38)
\rightarrow better than original Hou '92 (0.52)
right line: L3 original $\left(\tan \beta \leq 0.38 m_{H^{-}} / 1 \mathrm{GeV}\right)$
left line: Mangano/Slabopitsky very optimistic: $\tan \beta \leq 0.27 m_{H^{-}} / 1 \mathrm{GeV}$
Hou limit would be almost exactly diagonal. (NB: flipped w.r.t. my plots)

Mangano/Slabopitsky 97

What does the $B_{u} \rightarrow \tau \nu$ measurement change ?

- We now have a measurement of $B_{u} \rightarrow \tau \nu$ from the B factories, therefore L3 result not interesting anymore for $\tan \beta / M_{H}$-limits
- But: $B_{u / c} \rightarrow \tau \nu$ at Z peak still interesting ?
- What does L3 (or any other experiment at the Z peak) actually measure?

$$
\begin{gathered}
\mathrm{BR}_{\mathrm{eff}}=\mathrm{BR}\left(B^{ \pm} \rightarrow \tau^{ \pm} \nu\right)\left(1+\frac{N_{c}}{N_{u}}\right) \\
\frac{N_{c}}{N_{u}}=\left|\frac{V_{c b}}{V_{u b}}\right|^{2} \frac{F_{b \rightarrow B_{c}^{ \pm}}}{F_{b \rightarrow B^{ \pm}}}\left(\frac{f_{B_{c}}}{f_{B}}\right)^{2} \frac{M_{B_{c}}}{M_{B}} \frac{\tau_{B_{c}}}{\tau_{B}}=0.35-1.0 \cdot \frac{F_{b \rightarrow B_{c}}}{10^{-3}}
\end{gathered}
$$

\rightarrow For $F_{b \rightarrow B_{c}} \sim 10^{-3}$, there can be one B_{c} event for each B_{u} event!

$$
\text { Significant } B_{c} \text { contribution to } B \rightarrow \tau \nu \text { at } Z \text { peak! }
$$

- There is a surprisingly large number of $B_{c}^{+} \rightarrow \tau^{+} \nu$ in the $B^{+} \rightarrow \tau^{+} \nu$ signal at the Z peak!
- Also important: " ϵ-corrections":

- Different corrections for B_{u} and B_{c} are possible, important to know both $B_{u}^{+} \rightarrow \tau^{+} \nu$ and $B_{c}^{+} \rightarrow \tau^{+} \nu$ rate!
- If SM is assumed: Use Z peak measurement to determine $F_{b \rightarrow B_{c}}$! \rightarrow Understand B_{c} production

Conclusions $(B \rightarrow \tau \nu)$

- $B \rightarrow \tau \nu$ is a very interesting decay channel, small in the SM, strongly modified by New Physics
- 2HDMs modify $B \rightarrow \tau \nu \Rightarrow B \rightarrow \tau \nu$ constrains 2 HDMs (and other NP models)
- Very good complementarity between $\Upsilon(4 S)$ and Z peak $\left(B_{c} \rightarrow \tau \nu\right)$!
- Need to know both channels (ϵ-corrections)
- Please measure $B \rightarrow \mu \nu$! BaBar's limit is 30% better...
$B \rightarrow \pi K$

The thing that intrigued the theorists:

- Those observables that had small electroweak (EW) contributions were as expected
- Observables with large EW corrections did not agree with expectations
- EW sector is where new physics would be expected!

Feynman diagrams for $B \rightarrow \pi \pi, B \rightarrow \pi K$

Colour-suppressed tree diagrams have the same topology as the QCD penguin diagrams, electroweak penguin diagrams have the same topology as tree diagrams.
$(P / T)_{K \pi} /(P / T)_{\pi \pi} \sim\left(V_{c s} / V_{u s}\right) /\left(V_{c d} / V_{u d}\right)_{\pi \pi} \sim 1 / \lambda^{2}$.
$\Longrightarrow B \rightarrow \pi \pi$ is tree-dominated, $B \rightarrow K \pi$ is penguin-dominated.

The approach:
i) $S U(3)$ flavour symmetry $S U(3)$-breaking effects are, however, included through ratios of decay constants and form factors. Also: sensitivity of the numerical results on non-factorizable $S U(3)$-breaking effects is explored.
ii) Neglect of the penguin annihilation and exchange topologies

Strategy:
i) Use experimental data on BRs and asymmetries in $B \rightarrow \pi \pi$ to determine $\pi \pi$ hadronic parameters
ii) With $S U(3)$, transform these to πK hadronic parameters
iii) Calculate all πK observables, compare with experiment

Buras/Fleischer 00
The $B \rightarrow \pi K$ puzzle has been around for a while, already in 2000 it was observed that the CLEO data exhibited a puzzling pattern.

$$
R_{\mathrm{c}} \equiv 2\left[\frac{\mathrm{BR}\left(B^{ \pm} \rightarrow \pi^{0} K^{ \pm}\right)}{\operatorname{BR}\left(B^{ \pm} \rightarrow \pi^{ \pm} K^{0}\right)}\right] \quad R_{\mathrm{n}} \equiv \frac{1}{2}\left[\frac{\mathrm{BR}\left(B_{d} \rightarrow \pi^{\mp} K^{ \pm}\right)}{\operatorname{BR}\left(B_{d} \rightarrow \pi^{0} K^{0}\right)}\right]
$$

The first $B \rightarrow \pi K$ puzzle was the R_{c} - R_{n} puzzle.

Situation in the R_{c} and R_{n} plane:

Experimental data has moved towards theory, no more puzzle.

Later (~ 2006):
$R_{\mathrm{C}}-R_{\mathrm{n}}$ puzzle almost solved, but some asymmetries still puzzling.
E.g.: $\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}\left(B_{d} \rightarrow \pi^{0} K_{\mathrm{S}}\right)$ predicted ~-0.9 but experiment ~-0.3.

Also (almost) resolved, both theory and experiment have moved! $\left(\Delta A \equiv \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B^{ \pm} \rightarrow \pi^{0} K^{ \pm}\right)-\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d} \rightarrow \pi^{\mp} K^{ \pm}\right) \neq 0\right.$ is a hadronic effect. $)$

Conclusions ($B \rightarrow \pi K$ puzzle)

- $B \rightarrow \pi K$ is very interesting because (unlike $B \rightarrow \pi \pi$) it is penguin dominated (\rightarrow room for New Physics)
- People were excited about the $B \rightarrow \pi K$ puzzle because the observables with large EW contributions (where new physics would be expected were peculiar. Also, QCD factorisation does not work as well as originally assumed.
- Improved experimental data and improved theory now give a consistent picture.

