

Semileptonic (and leptonic) B decays

Christoph Schwanda Institute of High Energy Physics Austrian Academy of Sciences

1st open meeting of the SuperKEKB collaboration

December 10-12, 2008 KEK, Japan

Semileptonic/leptonic decays

precision measurements of $|V_{cb}|$ and $|V_{ub}|$

rare decays, search for new phenomena

2

Tagging

- •Only signal reconstructed
- •High efficiency

Semileptonic tag

- •Good statistics, clean events
- •Kinematics not fully reconstructed

Fullrecon tag

- •Kinematics fully known
- Low statistics

 $|V_{cb}|$ from $B^0 \rightarrow D^{(*)} |_{\nu}$

• Decay width

$$\begin{aligned} \frac{d\Gamma}{dw}(\overline{B} \to D^* \ell \overline{\nu}_{\ell}) &= \frac{G_F^2}{48\pi^3} |V_{cb}|^2 m_{D^*}^3 (w^2 - 1)^{1/2} P(u((\mathcal{F}(w))^2) \\ \frac{d\Gamma}{dw}(\overline{B} \to D \ell \overline{\nu}_{\ell}) &= & \text{form factor} \\ \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B + m_D)^2 m_D^3 (w^2 - 1)^{3/\ell} (\mathcal{G}(w))^2 \qquad w \equiv v \cdot v' \end{aligned}$$

- Experiments fit F(1)|V_{cb}| and G(1)|V_{cb}| using a form factor parameterization based on HQET and dispersion relations [Caprini et al., Nucl. Phys. B530, 153 (1998)]
- Form factor normalizations from lattice QCD

F(1) = 0.921 +/- 0.013 +/- 0.020	J.Laiho et al. [arXiv:0808.2519]
G(1) = 1.074 +/- 0.018 +/- 0.016	M.Okamoto et al. [Nucl.Phys.Proc.Suppl. 140, 461 (2005)]

D*

D

 $|V_{cb}| = (38.1 + - 0.6(exp) + - 0.9(th)) \times 10^{-3} (D^*)$ $|V_{cb}| = (39.7 + - 1.4(exp) + - 0.9(th)) \times 10^{-3} (D)$ $3.5\% \qquad 2.3\%$

Belle $B^0 \rightarrow D^{*-}I^+\nu$ untagged

eakdown of the systematic error components					
	ρ^2	<i>R</i> ₁ (1)	$R_{2}(1)$	$\mathcal{B}(B^0)$	$\mathcal{F}(1) V_{cb} $
Stat. error	0.050	0.060	0.043	0.030	0.22
D**	0.015	0.038	0.011	0.051	0.25
Uncorr.	0.009	0.028	0.002	0.003	0.04
Sig.corr.	0.003	0.003	0.007	0.028	0.14
Fake ℓ	0.020	0.037	0.009	0.002	0.04
Fake D*	0.012	0.011	0.009	0.034	0.33
Continuum	0.003	0.008	0.000	0.001	0.02
Trk., det.eff.	-	-	-	0.221	0.86
$\mathcal{B}\left(D^{0} ight)$	-	-	-	0.081	0.31
$\mathcal{B}(D^*)$	-	-	-	0.033	0.13
B ⁰ life time	-	-	-	0.026	0.10
N _{BB}	-	-	-	0.036	0.14
$f_{+-}/f_{0\bar{0}}$	0.003	0.011	0.005	0.001	0.04
Syst. error	0.029	0.062	0.019	0.251	1.04

[arXiv:0810.1657]

 $|V_{cb}|$ from B $\rightarrow X_c |v|$

• $\Gamma(B \rightarrow X_c | v)$ can be systematically calculated with the operator production expansion (OPE)

$$\Gamma_{\rm sl}(b \to c) = \frac{G_F^2 \, m_b^5(\mu)}{192 \, \pi^3} \, |V_{cb}|^2 \, (1 + A_{\rm ew}) \, A^{\rm pert}(r, \mu)$$

$$\left[z_0(r) \left(1 - \frac{\mu_{\pi}^2(\mu) + \mu_G^2(\mu) + \frac{\rho_D^3(\mu) + \rho_{LS}^3(\mu)}{m_b(\mu)}}{2m_b^2(\mu)} \right)^{-1} + d(r) \frac{\rho_D^3(\mu)}{m_b^3(\mu)} + d(r) \frac{\rho_D^3(\mu)}{m_b^3(\mu)} + \dots \right]$$

$$\begin{array}{l} \text{HQ parameters (non-calculable; contain soft QCD physics)} \\ \text{from [Benson et al., Nucl. Phys. B665, 367 (2003)]} \\ \text{Nucl. Phys. B665, 367 (2003)]} \end{array}$$

Non-perturbative parameters can be measured from inclusive observables in B decays

Kinetic scheme ($X_c I_v + X_s \gamma$ data)

$$\begin{split} |V_{cb}| &= (41.58 \pm 0.69_{fit} \pm 0.08_{\tau B} \pm 0.58_{th}) \ x \ 10^{-3} \\ m_b^{\ kin} &= 4.543 \pm 0.075 \ GeV \\ m_c^{\ kin} &= 1.055 \pm 0.118 \ GeV \end{split}$$

[P.Gambino, N.Uraltsev, Eur.Phys.J. C34, 181]

Results for m_b compatible after scheme translation

1S scheme ($X_c I_v + X_s \gamma$ data) $|V_{cb}| = (41.56 \pm 0.68_{fit} \pm 0.08_{\tau B}) \times 10^{-3}$ $m_b^{1S} = 4.723 \pm 0.055 \text{ GeV}$

[C.Bauer, Z.Ligeti, M.Luke, A.Manohar, Phys.Rev. D70, 094017]

Input	V _{cb} (10 ⁻³)	m _b (GeV)	μ^2_{π} (GeV ²)	χ²/ndf	
All moments	41.67+/-0.43(fit)+/- 0.08(τ _B)+/-0.58(th)	4.601+/- 0.034	0.440+/- 0.040	29.7/57	1.7%
X _c l∿ only	41.48+/-0.47(fit)+/- 0.08(τ _B)+/-0.58(th)	4.659+/- 0.049	0.428+/- 0.044	24.1/46	1.8%

Prospects for |V_{cb}|

How can we improve the measurement of $|V_{cb}|$?

- Exclusive
 - Move to tagged measurements to reduce background systematics
 - Test assumptions of the measurement (form factor parametrization)
 - Progress in lattice QCD needed
- Inclusive
 - Current uncertainty mainly theoretical
 - Different observables might better constraint HQ parameters
 - Remove the B $\rightarrow X_{s\gamma}$ data from the analysis?

$|V_{ub}|$ from $B \rightarrow \pi l v$

• Decay width

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 m_b^3} \lambda(q^2)^{3/2} |f_+(q^2)|^2 , \quad q^2 = (p_\ell + p_\nu)^2$$

- Need form factor shape and normalization for |V_{ub}|
- Available form factor calculations
 - Relativistic quark models
 - ISGW2 [Phys. Rev. D52, 2783 (1995)]
 - Light cone sum rules (LCSR) in the region $q^2 < 14 \text{ GeV}^2$
 - Ball-Zwicky [Phys. Rev. D71, 014015 (2005)]
 - Lattice QCD in the region $q^2 > 16 \text{ GeV}^2$
 - HPQCD [Phys. Rev. D73, 074502 (2006)]
 - FNAL [Nucl. Phys. Proc. Suppl. 140, 461 (2005)]

Experimental uncertainty ~ 4-6% F.F. normalization uncertainty ~ 13-15%

14

 $B^0 \rightarrow \pi^- l^+ v q^2$ spectrum

Belle fullrecon (605/fb)

BaBar untagged (206/fb)

[PRL 98, 091801 (2007)]

[arXiv:0812.1414]

$|V_{ub}|$ from $B \rightarrow X_u |v$

- Also based on the OPE, as for $B \rightarrow X_c \ I \ v$ decays
- However, experimental cuts to suppress $X_c I_V$ background compromise the convergence of the OPE
- Different theoretical approaches to model the nonperturbative component
 - Bosch, Lange, Neubert, Paz (BLNP) [Phys.Rev. D72, 073006 (2005)]
 - Anderson, Gardi (DGE) [JHEP 0601:097 (2006)]
 - Gambino, Giordano, Ossola, Uraltsev (GGOU) [JHEP 0710:058 (2007)]
 - Aglietti, Di Lodovico, Ferrera, Ricciardi (AC) [arXiv:0711.0860]
 - Bauer, Ligeti, Luke (BLL) [Phys.Rev. D64, 113004 (2001)]

BLNP framework

How predictive is the theory?

17

Belle Multivariate analysis (NEW @ CKM2008) 2/2

~90⁺ % total phase space, thus theory error less correlated to other Vub determinations

Prospects for |V_{ub}|

How can we improve the measurement of $|V_{ub}|$?

A lot of homework for theorists but...

- Exclusive
 - Measure (at least) the $\pi I v q^2$ spectrum
- Inclusive
 - Try to cover as much as possible of the $X_u I_v$ phase space

- Leptonic decays $-B^+ \rightarrow I^+\nu$ with I = e, μ or τ
- Semi-taunic decays
 - $-B \rightarrow \overline{D}^{(*)}\tau v$

Leptonic decays

• SM prediction with $|V_{ub}| = (4.39 + - 0.54) \times 10^{-3}$ and $f_B = 189 + - 27 \text{ MeV}$

$B^+ \rightarrow e^+ v$	$B^+ \rightarrow \mu^+ \nu$	$B^+ \rightarrow \tau^+ \nu$
(1.7 +/- 0.4) x 10 ⁻¹¹	(7.1 +/- 1.6) x 10 ⁻⁷	(1.6 +/- 0.4) x 10 ⁻⁴

 Might be enhanced due to new physics contribution (charged Higgs, ...)

• Inclusive measurements

(limits are 90% C.L.)

	$B^+ \rightarrow e^+ v$	$B^+ \rightarrow \mu^+ \nu$	$B^+ \rightarrow \tau^+ \nu$
Belle [PLB647, 67]	< 9.8 x 10 ⁻⁷	< 1.7 x 10 ⁻⁶	
BaBar [arXiv:0807.4187]		< 1.3 x 10 ⁻⁶	

• Semileptonic tag

	$B^+ \rightarrow e^+ v$	$B^+ \rightarrow \mu^+ \nu$	$B^+ \rightarrow \tau^+ \nu$
Belle [arXiv:0809.3834]			(1.65+/-0.52) x 10 ⁻⁴

• Fullrecon tag

	$B^+ \rightarrow e^+ v$	$B^+ \rightarrow \mu^+ \nu$	$B^+ \rightarrow \tau^+ \nu$
Belle [PRL97, 251802]			(1.8 +/- 0.7) x 10 ⁻⁴
BaBar [PRD77, 091104; PRD77, 011107]	< 5.2 x 10 ⁻⁶	< 5.6 x 10 ⁻⁶	(1.8 +/- 1.0) x 10 ⁻⁴

Semi-tauonic B decays

- Challenging experimentally as up to 3 neutrinos in the final state
- Fullrecon tagging is mandatory

Decay mode	BF[%]	signif.	Ref.
$B^0 \rightarrow D^{*-} \tau^+ \nu_\tau$	$2.02^{+0.40}_{-0.37}(stat) \pm 0.37(syst)$	5.2σ	
	$1.11 \pm 0.51(stat) \pm 0.04(syst) \pm 0.04(norm)$	2.7σ	
$B^- \rightarrow D^{*0} \tau^+ \nu_{\tau}$	$2.25 \pm 0.48(stat) \pm 0.22(syst) \pm 0.17(norm)$	5.3σ	
$B^0 \rightarrow D^0 \tau^+ \nu_{\tau}$	$1.04 \pm 0.35(stat) \pm 0.15(syst) \pm 0.10(norm)$	3.3σ	
$B^{\text{-}} \rightarrow D^0 \tau^+ \nu_\tau$	$0.67 \pm 0.37(stat) \pm 0.11(syst) \pm 0.07(norm)$	1.8σ	

Belle [PRL 99, 191807 (2007)] BELLE

BaBar [PRL 100, 021801 (2008)]

Bounds on the charged Higgs mass in the 2HDM type II model as a function of tan β . (Colored areas are excluded at 95% C.L.) [U.Haisch, arXiv:0805.2141]

Summary

- $|V_{cb}|$ and $|V_{ub}|$
 - The precision of $|V_{ub}/V_{cb}|$ can be further improved
 - Though more data alone will not suffice
- Rare (semi-)leptonic B decays
 - Sensitive probe for new physics (e.g., charged Higgs)

Backup slides

The CKM mechanism

• The charged current interaction in the SM

$$-\mathcal{L}_{W^{\pm}} = \frac{g}{\sqrt{2}} \overline{u_{Li}} \gamma^{\mu} (V_{\text{CKM}})_{ij} d_{Lj} W^{+}_{\mu} + \text{h.c.}$$

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
[Kobayashi, Maskawa, Prog. Theor. Phys. 49, 652 (1973)]

 V_{CKM} is a unitary 3x3 matrix; it contains three real parameters and one complex phase

• Its unitarity is commonly represented by the unitarity triangle

- At the Y(4S), BB are produced at threshold
- This allows to
 - Select a B signal using two nearly independent variables

$$M_{\rm B} = \sqrt{(E_{\rm beam}^{*})^2 - (\Sigma P_i)^2}$$
$$\Delta E = \Sigma E_i - E_{\rm beam}^{*}$$

- Determine the 4 momentum of one B by
 reconstructing the other
- Distinguish BB (spherical) from continuum events (jet-like)

