的面
OAW
Austrian Academy
of Sciences

## Semileptonic (and leptonic) B decays

Christoph Schwanda Institute of High Energy Physics
Austrian Academy of Sciences

$1^{\text {st }}$ open meeting of the SuperKEKB collaboration
December 10-12, 2008 KEK, Japan

## Semileptonic/leptonic decays


precision
measurements
of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ and $\left|\mathrm{V}_{\mathrm{ub}}\right|$
(1)
rare decays, search for new
phenomena

## (1) Current precision



## Tagging



## $\left|V_{\text {cb }}\right|$ from $\left.B^{0} \rightarrow D^{\left.()^{-}\right)}\right|^{+} v$

- Decay width

$$
\begin{aligned}
& \frac{d \Gamma}{d w}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}\right)=\frac{G_{F}^{2}}{48 \pi^{3}}\left|V_{c b}\right|^{2} m_{D^{*}}^{3}\left(w^{2}-1\right)^{1 / 2} P(u)(\mathcal{F}(w))^{2} \\
& \frac{d \Gamma}{d w}\left(\bar{B} \rightarrow D \ell \bar{\nu}_{\ell}\right)= \\
& \frac{G_{F}^{2}}{48 \pi^{3}}\left|V_{c b}\right|^{2}\left(m_{B}+m_{D}\right)^{2} m_{D}^{3}\left(w^{2}-1\right)^{3 /(\mathcal{G}(w))^{2}}
\end{aligned}
$$

- Experiments fit $\mathrm{F}(1)\left|\mathrm{V}_{\mathrm{cb}}\right|$ and $\mathrm{G}(1)\left|\mathrm{V}_{\mathrm{cb}}\right|$ using a form factor parameterization based on HQET and dispersion relations [Caprini et al., Nucl. Phys. B530, 153 (1998)]
- Form factor normalizations from lattice QCD

| $F(1)=0.921+/-0.013+/-0.020$ | J.Laiho et al. [arXiv:0808.2519] |
| :---: | :---: |
| $\mathrm{G}(1)=1.074+/-0.018+/-0.016$ | M.Okamoto et al. <br> [Nucl.Phys.Proc.Suppl. 140, 461 (2005)] |

D


$$
\begin{gathered}
1.6 \% \frac{2.4 \%}{} \begin{array}{c}
\left|\mathrm{V}_{\mathrm{cb}}\right|=(38.1+/-0.6(\exp )+/-0.9(\text { th })) \times 10^{-3}\left(\mathrm{D}^{*}\right) \\
\left|\mathrm{V}_{\mathrm{cb}}\right|=(39.7+/-1.4(\exp )+/-0.9(\mathrm{th})) \times 10^{-3}(\mathrm{D}) \\
\hline 3.5 \%
\end{array} \frac{2.3 \%}{}
\end{gathered}
$$

## Belle $\mathrm{B}^{0} \rightarrow \mathrm{D}^{*-I^{+} v}$ untagged

Breakdown of the systematic error components

|  | $\rho^{2}$ | $R_{1}(1)$ | $R_{2}(1)$ | $\mathcal{B}\left(B^{0}\right)$ | $\mathcal{F}(1)\left\|V_{c b}\right\|$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Stat. error | 0.050 | 0.060 | 0.043 | 0.030 | 0.22 |
| $D^{* *}$ | 0.015 | 0.038 | 0.011 | 0.051 | 0.25 |
| Uncorr. | 0.009 | 0.028 | 0.002 | 0.003 | 0.04 |
| Sig.corr. | 0.003 | 0.003 | 0.007 | 0.028 | 0.14 |
| Fake $\ell$ | 0.020 | 0.037 | 0.009 | 0.002 | 0.04 |
| Fake $D^{*}$ | 0.012 | 0.011 | 0.009 | 0.034 | 0.33 |
| Continuum | 0.003 | 0.008 | 0.000 | 0.001 | 0.02 |
| Trk., det.eff. | - | - | - | 0.221 | 0.86 |
| $\mathcal{B}\left(D^{0}\right)$ | - | - | - | 0.081 | 0.31 |
| $\mathcal{B}\left(D^{*}\right)$ | - | - | - | 0.033 | 0.13 |
| $B^{0}$ life time | - | - | - | 0.026 | 0.10 |
| $N_{B \bar{B}}$ | - | - | - | 0.036 | 0.14 |
| $f_{+-/} f_{0 \overline{0}}$ | 0.003 | 0.011 | 0.005 | 0.001 | 0.04 |
| Syst. error | 0.029 | 0.062 | 0.019 | 0.251 | 1.04 |

## $\left|V_{c b}\right|$ from $B \rightarrow X_{C} \mid v$



- $\Gamma\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{c}} \mid v\right)$ can be systematically calculated with the operator production expansion (OPE)

$$
\begin{aligned}
& \Gamma_{\mathrm{sl}}(b \rightarrow c)=\frac{G_{F}^{2} m_{b}^{5}(\mu)}{192 \pi^{3}}\left|V_{c b}\right|^{2}\left(1+A_{\mathrm{ew}}\right) A^{\text {pert }}(r, \mu)
\end{aligned}
$$

$$
\begin{aligned}
& \left.r=m_{c}^{2}(\mu) / m_{b}^{2}(\mu)-2(1-r) \frac{\mu_{G}^{2}(\mu) \frac{\rho_{D}^{3}(\mu) r_{5 s}^{3}(\mu)}{m_{b}(\mu)}}{m_{b}^{2}(\mu)}+d(r) \frac{\rho_{D}^{3}(\mu)}{m_{b}^{3}(\mu)}+\ldots\right] \\
& \text { from [Benson et al., } \\
& \text { Nucl. Phys. B665, } \\
& 367 \text { (2003)] } 8
\end{aligned}
$$

- Non-perturbative parameters can be measured from inclusive observables in B decays



## Kinetic scheme ( $\mathrm{X}_{\mathrm{c}} \mid \nu+\mathrm{X}_{\mathrm{s}} \gamma$ data)

$$
\begin{aligned}
& \left|\mathrm{V}_{\mathrm{cb}}\right|=\left(41.58 \pm 0.69_{\mathrm{fit}} \pm 0.08_{{ }_{\mathrm{iB}}} \pm 0.58_{\mathrm{th}}\right) \times 10^{-3} \\
& \mathrm{~m}_{\mathrm{b}}^{\mathrm{kin}}=4.543 \pm 0.075 \mathrm{GeV} \\
& \mathrm{~m}_{\mathrm{c}}^{\mathrm{kin}}=1.055 \pm 0.118 \mathrm{GeV}
\end{aligned}
$$

[P.Gambino, N.Uraltsev, Eur.Phys.J. C34, 181]


Results for $\mathrm{m}_{\mathrm{b}}$ compatible after scheme translation

1S scheme ( $\mathrm{X}_{\mathrm{c}} \mid \nu+\mathrm{X}_{\mathrm{s}} \gamma$ data)
$\left|\mathrm{V}_{\mathrm{cb}}\right|=\left(41.56 \pm 0.68_{\mathrm{fit}} \pm 0.08_{\mathrm{TB}}\right) \times 10^{-3}$
$\mathrm{m}_{\mathrm{b}}{ }^{1 S}=4.723 \pm 0.055 \mathrm{GeV}$
[C.Bauer, Z.Ligeti, M.Luke, A.Manohar, Phys.Rev. D70, 094017]



| Input | $\left\|\mathrm{V}_{\mathrm{cb}}\right\|\left(10^{-3}\right)$ | $\mathrm{m}_{\mathrm{b}}(\mathrm{GeV})$ | $\mu_{\pi}^{2}\left(\mathrm{GeV}^{2}\right)$ | $\chi^{2 / n d f}$ |
| :---: | :---: | :---: | :---: | :---: |
| All moments | $\begin{aligned} & 41.67+/-0.43(\mathrm{fit})+/- \\ & 0.08\left(\tau_{\mathrm{B}}\right)+/-0.58(\mathrm{th}) \end{aligned}$ | $\begin{gathered} 4.601+/- \\ 0.034 \end{gathered}$ | $\begin{gathered} 0.440+/- \\ 0.040 \end{gathered}$ | 29.7/57 |
| X ${ }_{\text {c }}$ v only | $\begin{aligned} & 41.48+/-0.47(\mathrm{fit})+/- \\ & 0.08\left(\tau_{\mathrm{B}}\right)+/-0.58(\mathrm{th}) \end{aligned}$ | $\begin{gathered} 4.659+/- \\ 0.049 \end{gathered}$ | $\begin{gathered} 0.428+/- \\ 0.044 \end{gathered}$ | 24.1/46 |

## Prospects for $\left|\mathrm{V}_{\mathrm{cb}}\right|$

## How can we improve the measurement of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ ?

- Exclusive
- Move to tagged measurements to reduce background systematics
- Test assumptions of the measurement (form factor parametrization)
- Progress in lattice QCD needed
- Inclusive
- Current uncertainty mainly theoretical
- Different observables might better constraint HQ parameters
- Remove the $B \rightarrow X_{s} \gamma$ data from the analysis?


## $\left|V_{u b}\right|$ from $B \rightarrow \pi \mid v$

- Decay width

$$
\left.\frac{d \Gamma(B \rightarrow \pi \ell \nu)}{d q^{2}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{192 \pi^{3} m_{b}^{3}} \lambda\left(q^{2}\right)\right)^{2}\left|f_{+}\left(q^{2}\right)\right|^{2}, \quad q^{2}=\left(p_{\ell}+p_{\nu}\right)^{2}
$$

- Need form factor shape and normalization for $\left|\mathrm{V}_{\mathrm{ub}}\right|$
- Available form factor calculations
- Relativistic quark models
- ISGW2 [Phys. Rev. D52, 2783 (1995)]
- Light cone sum rules (LCSR) in the region $q^{2}<14 \mathrm{GeV}^{2}$
- Ball-Zwicky [Phys. Rev. D71, 014015 (2005)]
- Lattice QCD in the region $q^{2}>16 \mathrm{GeV}^{2}$
- HPQCD [Phys. Rev. D73, 074502 (2006)]
- FNAL [Nucl. Phys. Proc. Suppl. 140, 461 (2005)]

```
BABAR SL tag: }\mp@subsup{\textrm{B}}{}{+}->\mp@subsup{\pi}{}{0}\mp@subsup{1}{}{+}v\times2\mp@subsup{\tau}{0}{}/\mp@subsup{\tau}{+}{
```



```
1.54 \pm0.41 }\pm0.2
BELLE SL tag: }\mp@subsup{\textrm{B}}{}{+}->\mp@subsup{\pi}{}{0}\mp@subsup{1}{}{+}v\times2\mp@subsup{\tau}{0}{}/\mp@subsup{\tau}{+}{
1.45 \pm0.26 \pm0.15
BELLE B 
1.24 \pm0.23 \pm0.06
BABAR SL tag: B }\mp@subsup{}{}{0}->\pi\mp@subsup{\pi}{}{-}\mp@subsup{1}{}{+}
1.38 }\pm0.21 \pm0.0
BELLE SL tag: B}\mp@subsup{}{}{0}->\mp@subsup{\pi}{}{-}\mp@subsup{1}{}{+}
1.38 \pm0.19 }\pm0.1
BABAR B reoo tag: B }\mp@subsup{}{}{0}->\mp@subsup{\pi}{}{-}\mp@subsup{1}{}{+}
1.07\pm0.27 \pm0.15
CLEO untagged: B}->\pi\mp@subsup{1}{}{+}
1.37\pm0.15 \pm0.11
BABAR untagged: B }->\pi\mp@subsup{1}{}{+}
1.46 }\pm0.07\pm0.0
BELLE B reco tag: B }\mp@subsup{}{}{0}->\pi\mp@subsup{|}{}{+}
1.12 \pm0.18 \pm0.05
Average: B }\mp@subsup{}{}{0}->\pi\mp@subsup{1}{}{+}
1.34 \pm0.06 \pm0.05
\mp@subsup{x}{}{3}/\textrm{doff}=3.59(CL= 44%)
-2 \(\stackrel{0}{\mathrm{~B}\left(\mathrm{~B}^{0} \rightarrow \pi^{-} 1^{+}{ }^{2} \mathrm{v}\right)}\left[\times 10^{-4}\right]\)
Ball-Zwicky q \({ }^{2}<16\)
\(3.34 \pm 0.12+0.55-0.37\)
HPQCD q \({ }^{2}>16\)
\(3.40 \pm 0.20+0.59-0.39\)
```



```
FNAL q \({ }^{2}>16\)
\(3.62 \pm 0.22+0.63-0.41\)
```



Experimental uncertainty ~ 4-6\%
F.F. normalization uncertainty ~ 13-15\%

## $B^{0} \rightarrow \pi^{-1+} v q^{2}$ spectrum

Belle fullrecon (605/fb)
BaBar untagged (206/fb)

[arXiv:0812.1414]


[PRL 98, 091801 (2007)]

## $\left|V_{u b}\right|$ from $B \rightarrow X_{u} \mid v$

- Also based on the OPE, as for $B \rightarrow X_{c} I v$ decays
- However, experimental cuts to suppress $X_{c} l v$ background compromise the convergence of the OPE
- Different theoretical approaches to model the nonperturbative component
- Bosch, Lange, Neubert, Paz (BLNP) [Phys.Rev. D72, 073006 (2005)]
- Anderson, Gardi (DGE) [JHEP 0601:097 (2006)]
- Gambino, Giordano, Ossola, Uraltsev (GGOU) [JHEP 0710:058 (2007)]
- Aglietti, Di Lodovico, Ferrera, Ricciardi (AC) [arXiv:0711.0860]
- Bauer, Ligeti, Luke (BLL) [Phys.Rev. D64, 113004 (2001)]


## BLNP framework

CLEO (Ee)
CLEO (Ee)
3.94\pm0.46+0.37-0.33
3.94\pm0.46+0.37-0.33
BELLE sim. ann. (m
BELLE sim. ann. (m
4.33\pm0.46+0.35-0.30
4.33\pm0.46+0.35-0.30
BELLE (Ee)
BELLE (Ee)
4.74\pm0.44+0.35-0.30
4.74\pm0.44+0.35-0.30
BABAR (Ee)
BABAR (Ee)
4.29\pm0.24+0.35-0.30
4.29\pm0.24+0.35-0.30
BABAR ( }\mp@subsup{\textrm{E}}{\textrm{e}}{},\mp@subsup{\textrm{s}}{\textrm{h}}{\mathrm{ max }}\mathrm{ )
BABAR ( }\mp@subsup{\textrm{E}}{\textrm{e}}{},\mp@subsup{\textrm{s}}{\textrm{h}}{\mathrm{ max }}\mathrm{ )
4.41\pm0.30+0.42-0.37
4.41\pm0.30+0.42-0.37
BELLE (mm
BELLE (mm
3.99\pm0.26+0.30-0.25
3.99\pm0.26+0.30-0.25
BABAR (m
BABAR (m
4.13\pm0.20+0.32-0.27
4.13\pm0.20+0.32-0.27
BABAR (m
BABAR (m
4.41 \pm0.29+0.36-0.31
4.41 \pm0.29+0.36-0.31
BABAR (P+
BABAR (P+
3.76\pm0.24+0.31-0.25
3.76\pm0.24+0.31-0.25
Average +/- exp + theory - theory
Average +/- exp + theory - theory
4.32\pm0.16+0.32-0.27
4.32\pm0.16+0.32-0.27
\mp@subsup{\chi}{}{2}/dot =8.5/8(CL=39%)
\mp@subsup{\chi}{}{2}/dot =8.5/8(CL=39%)
Bosch, Lange, Neubert and Paz (BLNP)
Bosch, Lange, Neubert and Paz (BLNP)
Phys.Rev.D72:073006,2005
Phys.Rev.D72:073006,2005
|
|
2 4
2 4
|V ub }|\times1\mp@subsup{0}{}{-3}\mp@subsup{]}{}{6
|V ub }|\times1\mp@subsup{0}{}{-3}\mp@subsup{]}{}{6

How predictive is the theory?

## Belle Multivariate analysis (NEW @ CKM2008) 2/2


~1035 Evts

2D fit in q2 mx. (projections shown)

| Kinematic <br> Region | $B\left(\mathrm{~B} \rightarrow X_{u} \mid \mathrm{V}\right) \times 10^{-3}$ <br> $\Delta$ (stat. | $m_{b}$ | $\left\|V_{u b}\right\|\left(10^{-3}\right) \%$ error | The.) |
| :---: | :---: | :---: | :---: | :---: |

$\sim 90^{+} \%$ total phase space, thus theory error less correlated to other Vub determinations

## Prospects for $\left|\mathrm{V}_{\mathrm{ub}}\right|$

How can we improve the measurement of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ ?
A lot of homework for theorists but...

- Exclusive
- Measure (at least) the $\pi l v q^{2}$ spectrum
- Inclusive
- Try to cover as much as possible of the $X_{u}$ lv phase space


## (2) Rare decays

- Leptonic decays
$-\mathrm{B}^{+} \rightarrow \mathrm{I}^{+} v$ with $\mathrm{I}=\mathrm{e}, \mu$ or $\tau$
- Semi-taunic decays
$-\mathrm{B} \rightarrow \overline{\mathrm{D}}^{(*)} \tau$


## Leptonic decays



- SM prediction with $\left|\mathrm{V}_{\mathrm{ub}}\right|=(4.39+/-0.54) \times 10^{-3}$ and $\mathrm{f}_{\mathrm{B}}=189+/-27 \mathrm{MeV}$

| $\mathrm{B}^{+} \rightarrow \mathrm{e}^{+} v$ | $\mathrm{~B}^{+} \rightarrow \mu^{+} v$ | $\mathrm{~B}^{+} \rightarrow \tau^{+} v$ |
| :---: | :---: | :---: |
| $(1.7+/-0.4) \times 10^{-11}$ | $(7.1+/-1.6) \times 10^{-7}$ | $(1.6+/-0.4) \times 10^{-4}$ |

- Might be enhanced due to new physics contribution (charged Higgs, ...)
- Inclusive measurements

|  | $\mathrm{B}^{+} \rightarrow \mathrm{e}^{+} v$ | $\mathrm{~B}^{+} \rightarrow \mu^{+} v$ | $\mathrm{~B}^{+} \rightarrow \tau^{+} v$ |
| :---: | :---: | :---: | :---: |
| Belle <br> $[$ PLB647, 67] | $<9.8 \times 10^{-7}$ | $<1.7 \times 10^{-6}$ |  |
| BaBar <br> $[\operatorname{arXiv:0807.4187]~}$ |  | $<1.3 \times 10^{-6}$ |  |

- Semileptonic tag

|  | $\mathrm{B}^{+} \rightarrow \mathrm{e}^{+} v$ | $\mathrm{~B}^{+} \rightarrow \mu^{+} v$ | $\mathrm{~B}^{+} \rightarrow \tau^{+} v$ |
| :---: | :---: | :---: | :---: |
| Belle <br> [arXiv:0809.3834] |  |  | $(1.65+/-0.52) \times 10^{-4}$ |

- Fullrecon tag

|  | $B^{+} \rightarrow \mathrm{e}^{+} v$ | $\mathrm{~B}^{+} \rightarrow \mu^{+} v$ | $\mathrm{~B}^{+} \rightarrow \tau^{+} v$ |
| :---: | :---: | :---: | :---: |
| Belle <br> [PRL97, 251802] |  |  | $(1.8+/-0.7) \times 10^{-4}$ |
| BaBar [PRD77, 091104; <br> PRD77, 011107] | $<5.2 \times 10^{-6}$ | $<5.6 \times 10^{-6}$ | $(1.8+/-1.0) \times 10^{-4}$ |

## Semi-tauonic B decays

- Challenging experimentally as up to 3 neutrinos in the final state
- Fullrecon tagging is mandatory

| Decay mode | BF[\%] | signif. | Ref. |
| :---: | :---: | :---: | :---: |
| $\mathrm{B}^{0} \rightarrow \mathrm{D}^{*} \tau^{+} \nu_{\tau}$ | $2.022_{-0.37}^{+0.40}($ stat $) \pm 0.37$ (syst) | $5.2 \sigma$ | $\beta$ |
|  | $1.11 \pm 0.51($ stat $) \pm 0.04($ syst $) \pm 0.04$ (norm $)$ | $2.7 \sigma$ | 0 |
| $\mathrm{B}^{-} \rightarrow \mathrm{D}^{*} \tau^{+} \nu_{\tau}$ | $2.25 \pm 0.48$ (stat) $\pm 0.22$ (syst) $\pm 0.17$ (norm) | $5.3 \sigma$ | 5 |
| $\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \tau^{+} \nu_{\tau}$ | $1.04 \pm 0.35($ stat $) \pm 0.15($ syst $) \pm 0.10$ (norm) | $3.3 \sigma$ |  |
| $\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \tau^{+} v_{\tau}$ | $0.67 \pm 0.37$ (stat) $\pm 0.11($ syst $) \pm 0.07$ (norm) | $1.8 \sigma$ |  |

$B$ Belle [PRL 99, 191807 (2007)] BaBar [PRL 100, 021801 (2008)]


Bounds on the charged Higgs mass in the 2HDM type II model as a function of $\tan \beta$. (Colored areas are excluded at 95\% C.L.) [U.Haisch, arXiv:0805.2141]

## Summary

- $\left|\mathrm{V}_{\mathrm{cb}}\right|$ and $\left|\mathrm{V}_{\mathrm{ub}}\right|$
- The precision of $\left|\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right|$ can be further improved
- Though more data alone will not suffice
- Rare (semi-)leptonic B decays
- Sensitive probe for new physics (e.g., charged Higgs)

Backup slides

## The CKM mechanism

- The charged current interaction in the SM

$$
\begin{aligned}
&-\mathcal{L}_{W^{ \pm}}=\frac{g}{\sqrt{2}} \overline{u_{L i}} \gamma^{\mu}\left(V_{\mathrm{CKM}}\right)_{i j} d_{L j} W_{\mu}^{+}+\text {h.c. } \\
& V_{\mathrm{CKM}}=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \\
& \text { [Kobayashi, Maskawa, Prog. }
\end{aligned}
$$

- $\mathrm{V}_{\mathrm{CKM}}$ is a unitary $3 \times 3$ matrix;
it contains three real parameters and one complex phase
- Its unitarity is commonly represented by the unitarity triangle


$$
\begin{aligned}
& \alpha \equiv \varphi_{2} \equiv \arg \left(-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right) \\
& \beta \equiv \varphi_{1} \equiv \arg \left(-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right) \\
& \gamma \equiv \varphi_{3} \equiv \arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right)
\end{aligned}
$$

- At the $Y(4 S), B \bar{B}$ are produced at threshold
- This allows to
- Select a B signal using two nearly independent variables

$$
M_{B}=\sqrt{\left(E_{\text {beam }}^{*}\right)^{2}-\left(\Sigma P_{\mathrm{i}}\right)^{2}}
$$

$$
\Delta \mathrm{E}=\Sigma \mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\text {beam }}^{*}
$$

- Determine the 4momentum of one B by reconstructing the other
- Distinguish $B \bar{B}$ (spherical) from continuum events (jet-like)




