Luminosity Frontier of Two-photon Physics

S.Uehara (KEK)

SuperKEKB, 9 Dec.2008

Hadron production in two-photon collisions **Physics Themes:**

Resonance production and decays Test of QCD models Researching features of hadron production

Low-cross section/small-branching fraction

Charmonia,

Exotic resonances (small but finite $\gamma\gamma$ coupling) **Baryon production in High-Energies**

⇔ Light-quark resonances larger cross sections and/or larger backgrounds systematic-error dominant²

 $W_{\gamma\gamma}$ (GeV)

Search for new charmonium or charmonium-like particle

Good field to search for C-even charmonium ⇔ C-odd only from ISR Belle Collaboration (S. Uehara et al.). Phys. Rev. Lett. 96 (2006) 082003.

A new resonance found in $\gamma\gamma \rightarrow D D$ showing a peak at 3.93 GeV **Z(3930)**

The spin is likely to be 2. Attributed to $\chi_{c2}(2P)$ candidate

$\chi_{c2}(2P)$

 $I^{G}(J^{PC}) = 0^{+}(2^{+})$

OMITTED FROM SUMMARY TABLE

$\chi_{c2}(2P)$ MASS							
VALUE (MeV)	EVTS	DOCUMENT	T ID	TECN	COMMENT		
3929±5±2	64	UEHARA	06	BELL	10.6 e ⁺ e ⁻	\overrightarrow{D} \overrightarrow{D}	
χ _{c2} (2 <i>P</i>) WIDTH							
VALUE (MeV)	EVTS	DOCUMENT	T ID	TECN	COMMENT	-	
29±10±2	64	UEHARA	06	BELL	10.6 e ⁺ e e ⁺ e ⁻	\overrightarrow{D}	
$\chi_{c2}(2P) \text{ PARTIAL WIDTHS}$ $$							
0.18±0.05±0.03	64	¹ UEHARA	06 BEL	L 10.6 e	e ⁺ e ⁻ → ⁺ e ⁻ DD		
¹ Assuming B(D^+D^-) = 0.89 B($D^0\overline{D}^0$).							
χ_{c2} (2P) BRANCHING RATIOS							
$\Gamma(D^+D^-)/\Gamma(D^0$	<u></u> <i>D</i> ⁰)					Γ ₃ /Γ ₄	
VALUE	EVTS	DOCUMENT ID	TECN	<u>сом</u>	<u>IENT</u>		
0.74±0.43±0.16	64	UEHARA	06 BEL	L 10.6 e ⁻	e ⁺ e ⁻ → ⁺ e ⁻ DD		

Search of Exotic charmonium-like particle

 Searching for formation and decay to a charmonium + light meson(s) (with C-even combination in total)

of course,

DD, DD*

(but detection of the slow-pion is generally inefficient)

Mass production of η_c , $\eta_c(2S)$

- ~10⁸ η_c and ~10⁷ $\eta_c(2S)$ are produced from 10 ab⁻¹ e+e- collisions at Super-B factory. BF and efficiency have to be multiplied, Still a big source of these particles.

Study of various decay branches Measure ratios $\Gamma(2S \rightarrow \text{some})/\Gamma(1S \rightarrow \text{the same})$

Similar study is possible at Charm factory on the J/ ψ energy Systematics are different due to a small mass difference, J/ ψ – η_c Comparison of interference effects among different processes

As for χ_{c0} and χ_{c2} , measurements of decays by two-photon production has no prominent predominance over charm-factory measurements. (Although still useful for confirmation, systematics, interference effects)

η_c and η_c (2S) from two-photon collisions at present KEKB/Belle

Baryon-pair production in high energies

Small cross sections

Other measurements

The elastic scattering, $\gamma\gamma \rightarrow \gamma\gamma$

Loop effect from all the charged particles

Interference with the double-radiation process $ee \rightarrow ee\gamma\gamma$ Unseparatable background from $\gamma\gamma\gamma\gamma$

Single-tag measurements

Determination of cross section of $\gamma * \gamma$ scatterings

- -- Formation of J^{PC}=1⁺⁺ meson resonances
- -- Exotic searches of spin-1
- -- Hadron form factors
- -- Photon structures

$$Q^2 = 4EE'\sin^2(\theta/2)$$

Q² (the virtuality of a photon) determination

the tagging system

good energy resolution is necessary at

Forward or backward calorimeter (may difficult geometrically)

Use kinematics of the single-tag from the exclusive detection φ correlation, $E' = p/\sin\theta$, $Mx^2=0$

Tracking only is still helpful (necessary for background rejection) Even with ECL, we can do a good job ($Q^2 > 1.5 GeV^2$).

Summary

- Searches for New charmonium and exotic "hidden-charm"
- η_c factory
- Baryon production, $\gamma\gamma$ elastic scattering
- Single-tag --- forward detector and/or ECL