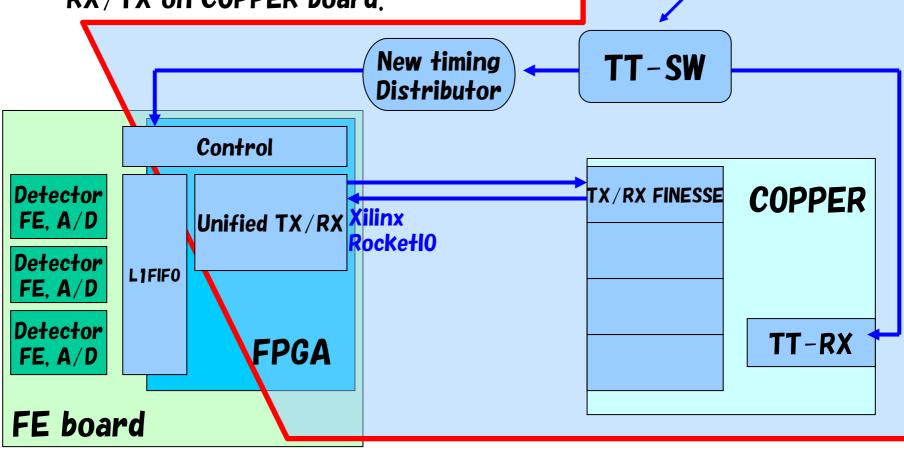
Front-end readout study for SuperKEKB

IGARASHI Youichi

Requirements of Front-end from DAQ


- · Trigger decision time (3μ sec ~ 6μ sec)
 - Buffer size of L] Trigger : 6 μsec
- · Rapid trigger communication
 - Trigger/Busy handshake
 - Event Tag.(ID?) receiving
- \cdot Dead-time must be less than a few μsec
- Data transport to DAQ system
- · (Trigger pattern information transport to GDL)

Unification idea by DAQ group

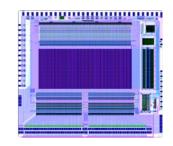
TRIGGER

Unification point

- Behind L1 FIFO and data link unification
- The Link(RocketIO) for Data transfer is chosen.
- RX/TX on COPPER board.

Detectors and readout methods

	Read-out device plan	location
SVD	APV-25 + Repeater + VME FADC	Near detector + electronics hut
CDC	ASB/TDC/FADC or High speed FADC	Near detector
PID ARICH	ASIC (SA,)	Near detector
PID TOP	(high precision time measurement : σ~10ps)	-
ECL	Waveform Digitizer	Side of detector + ?
KLM	Disc.+FPGA	Near detector
PXL	Application of PANDA readout board	

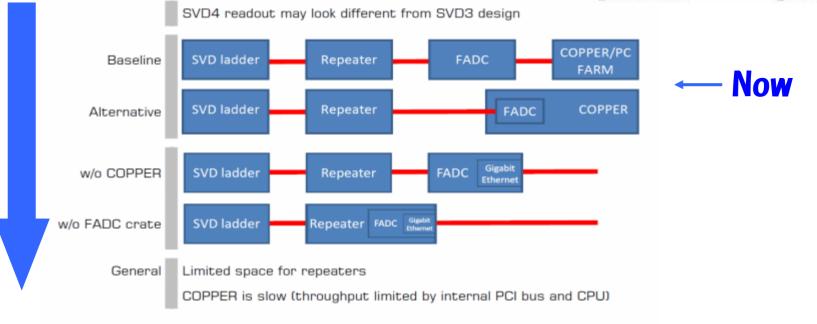

SVD front-end

APV-**25** readout baseline design works already.

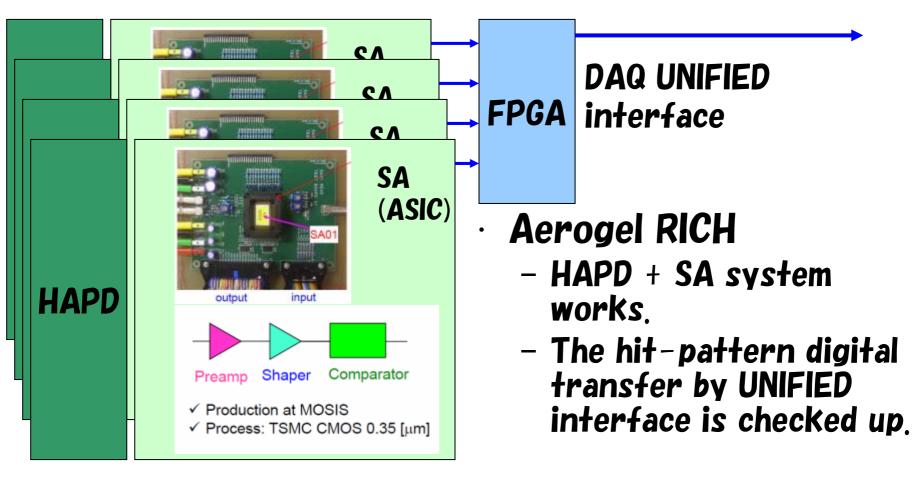
•

•

SVD group will progress to w/o FADC crate design to reduce module space and power consumption.

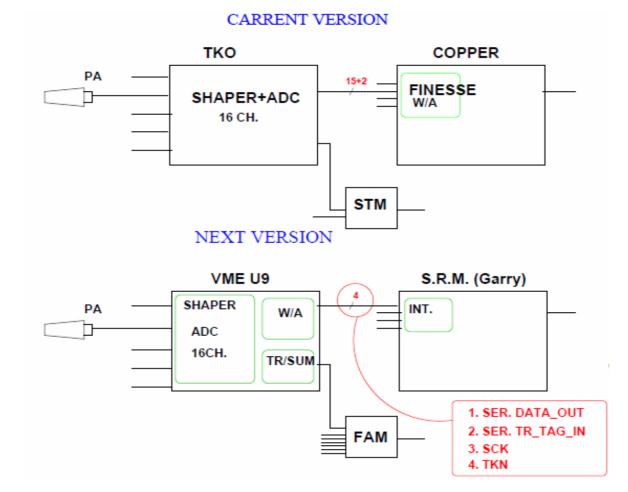


SVD3 Readout - Repeater and Back-End



Repeater Box ("DOCK")

SU VME readout crate


PID front-end

COPPER based Waveform digitizer was tested. VME U9 Shaper ADC Waveform Analyzer is planed.

•

KLM front-end

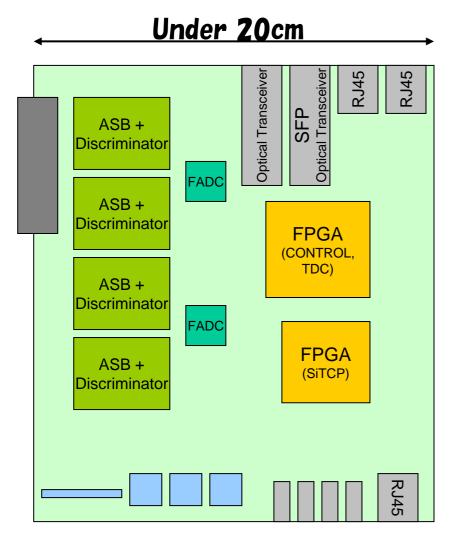
 - time-multiplex → COPPER TDC system works.

- The hit-pattern digital transfer by UNIFIED interface is checked up.
- · New Scintillator :
 - The hit-pattern digital transfer by UNIFIED interface ?

G.S.Varner's Proposal

- Waveform sampling for all detectors
- · TARGET :
 - 1GHz, 9bit digitizer
- · **BLAB2** :
 - 10GHz digitizer which can be used highresolution time measurements

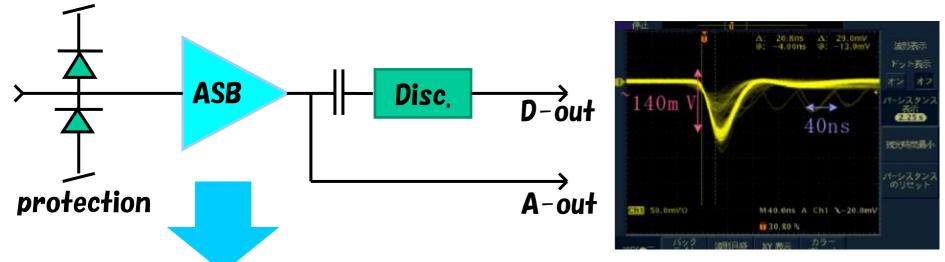
Subdetector	ASIC	ref. ASIC	Location	FPGA link
SVD3	APV25		E-hut	no
new SVD	BSR/KUPID	APV25	hybrid/dock	yes
CDC	BCA	TARGET	in detector	yes
PID SIPMT	BCA	TARGET	in detector	yes
PID HP-PMT	HPBA	BLAB2	in detector	yes
ECL	N/A		on detector	yes
Scint. KLM	BCA	TARGET	in detector	yes
VFV	BCA	TARGET	in detector	yes

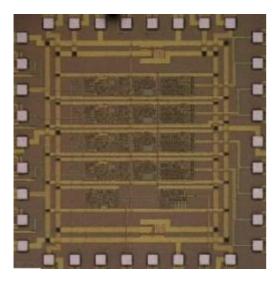

CDC Readout study with DAQ UNIFIED interface

· CDC FE prototype card

- A study about CDAQ/Front-end data transport.
- A study about GDL/Front-end data transport
- A study of the CDC readout scheme
 - \cdot Charge measurements by (slow) FADC
 - · Drift time measurements by FPGA based TDC
- A study of common mode noise from the frontend readout board to CDC
- A confirmation of front-end specification

· G.V.'s proposal FE will be tested in parallel.


CDC FE Prototype card


- 16ch/board
- BJT-ASB/Discriminator
- FADC: over 20MHz / 10bit
 - FPGA : Vertex-5 LXT
 - TDC:] nsec counting
 - FADC reading
 - Control
 - FPGA: Spertan3A
 - SiTCP for CDC study
 - Connectors
 - RJ-45 for SiTCP
 - RJ-**45** for DAQ timing signals
 - RJ-**45** for DAQ data line
 - SFP for DAQ data line
 - Optical TX/RX for GDL
 - LEMO input x 3, output x 1

Shielded substrate

Front-end (for system test)

Fe source

ASB

•

- Amp. Shaper Buffer
- 4ch/chip
- Peaking time ~40nsec
- Gain :
 - $-360 \text{mV} / \text{pC} \sim -1400 \text{mV} / \text{pC}$
 - · (**4** step variable)

TDC in FPGA

title

900

800

700

600

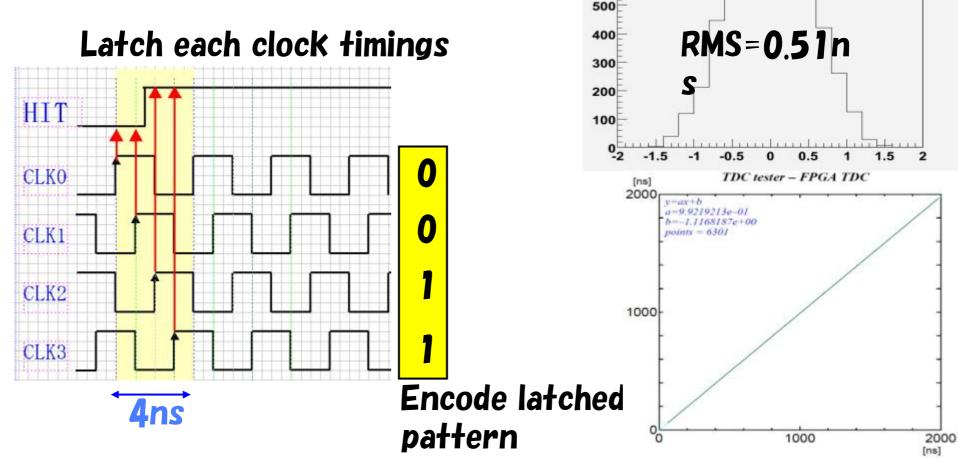
Input: Hoshin 16bit

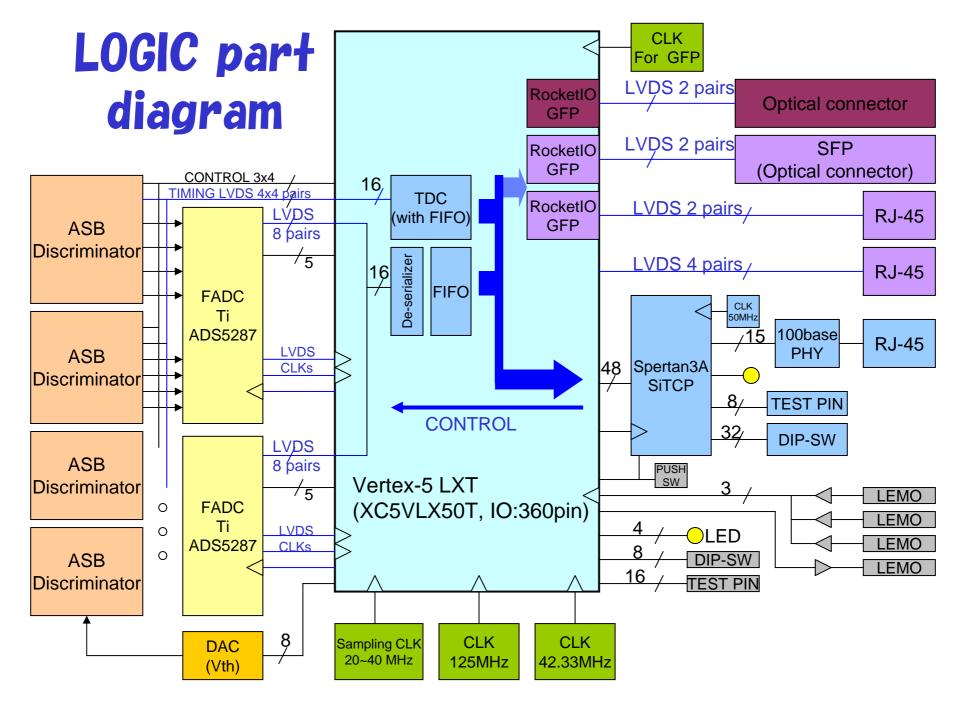
TDC tester

ch1

6354

0.5182


0.000659


Entries

Mean

DMC

To use 4 different phase 250MHz Clock in the aim of 1 nsec counting

Scheduled plan

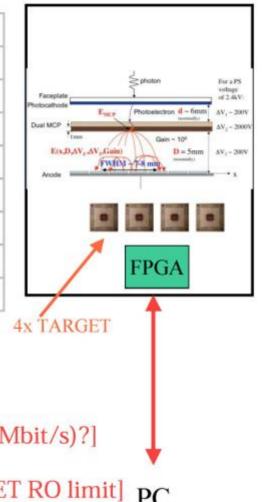
2008/11	Study preliminary specification
2008/11,12	design circuit schematics –ASD part (T.Taniguchi–san) –Digital part (M.Saito–san)
2008/12 end	order printed circuit board design
2009/2	Final check of the PC board design and start production -M.Ikeno-san etc
2009/3	Start the practical study

Summary

- Each detector groups are progressing to design the detector Front-end.
- G.V. offer good two high speed waveform samplers to unified FE.
 - The unification by the waveform sampler should be discussed.
 - Those prototype is available.
- UNIFIED interface R&D has been started in collaboration with CDC group.

lssues

•


•

- Treatments about over 20 MB/sec/link speed data flow
 - · COPPER can treat up to 40MB/sec data flow w/o network.
 - Will detector groups request more faster single link data flow ?
- Discussion with the groups which thinking COPPER-less option.

Backups

TARGET (TeV gamma) Proto System Specifications

4096	samples/channel (2us trig latency)
16	channels/TARGET ASIC
4	TARGET ASIC
~9	bits resolution
32	samples in window (~32ns)
~1	GSa/s (up to 2.5GSa/s)
2k	word (9 bits) Event size
16	us to read all samples
50	kHz sustained readout

- Any group of 16 packing possible
- Readout link
 - Initially USB2 [>50kHz Event sustained (20Mbit/s)?]
 - Fiber links to cPCI as upgrade [make TARGET RO limit] PC and use to collect trigger information

Highly Integrated Readout

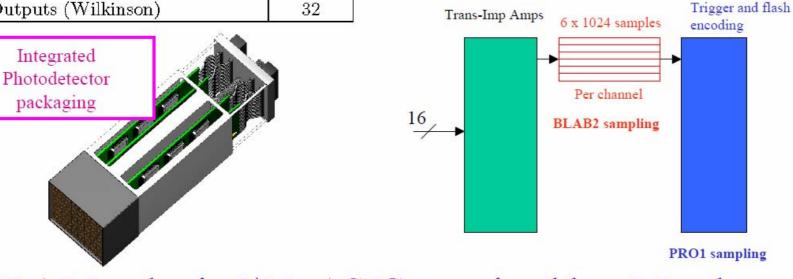
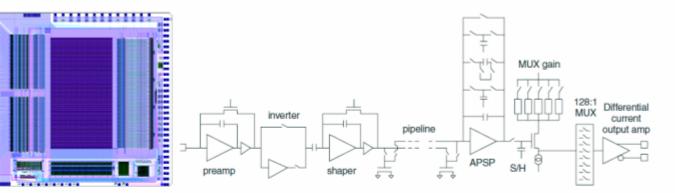

Buffered LABRADOR

TABLE II: BLAB2 ASIC Specifications.

Item	Value	
Photodetector Input Channels	16	
Linear sampling arrays/channel	_2▼ 6	
Storage cells/linear array	512 1()2
Sampling speed (Giga-samples/s)	2.0 - 10.0	
Outputs (Wilkinson)	32	


BLAB2 ASIC

BLAB2 submit 6/23, ASICs received last Monday

SVD front-end

APV25 Front-End Chip

APV25

Developed for CMS Tracker

Features 50ns (default) peaking time (cf. 800ns of current VA1TA) \rightarrow significant occupancy reduction

40MHz (default) clock, 192-cell pipeline \rightarrow no dead-time

Noise: 250 e + 36 e/pF (peak mode) - drawback of fast shaping

Multi-peak mode allows to several samples along shaping cur additional occupancy reduction possible through peak time d ε

SVD3 Readout - Repeater and Back-End

Repeater Box ("DOCK")

9U VME readout crate