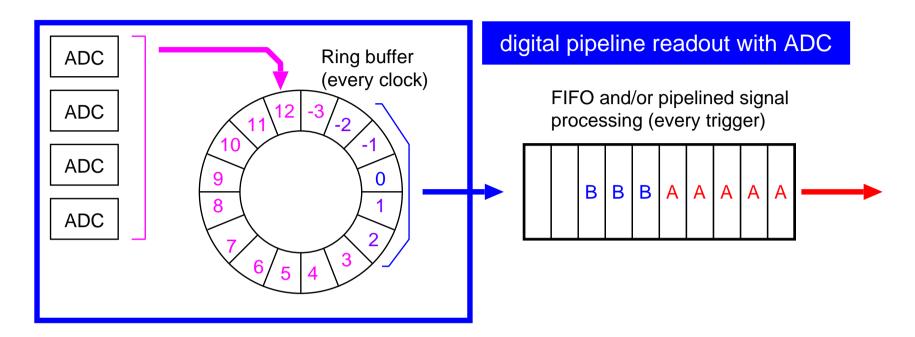
Timing distribution for SuperBelle DAQ

Mikihiko Nakao (KEK, IPNS) Dec 12, 2008 Open Collaboration Meeting

mikihiko.nakao@kek.jp

Requirements / Wishes


• Trigger rate

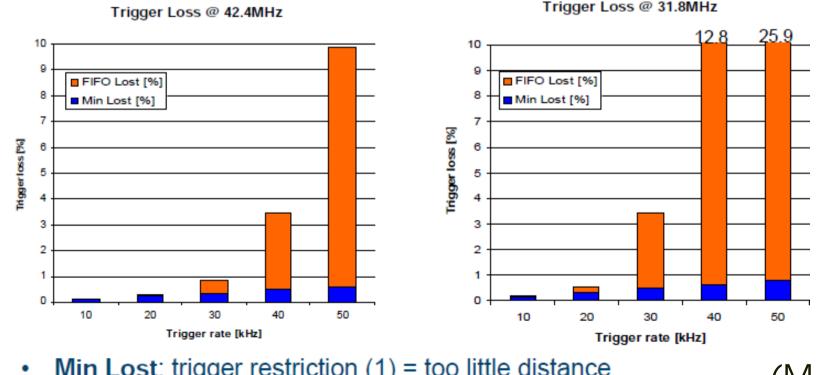
- 10 kHz (nominal) and 30 kHz (maximum) was decided when the target luminosity was $1\times10^{35}~{\rm cm^{-2}s^{-1}}$
- \bullet We now have ~400 Hz at 1.6 $\times\,10^{34}~{\rm cm}^{-2}{\rm s}^{-1}$
 - ♦ 20 kHz if it scales with luminosity
- <u>20 kHz</u> (nominal) and <u>40 or 50 kHz</u> (maximum) would be a more suitable requirement (???) unless the rate is guaranteed by the trigger group
- Readout deadtime
 - Hope to have "deadtimeless" readout scheme
 - "<3%" deadtime would be a target</p>
 - ("10%" deadtime would not be allowed)
 - Back-end should be designed to avoid additional deadtime due to back pressure (buffer size/depth)

Pipeline readout

 Driven by clock and trigger

Key parameters

- System clock frequency (f_{SCLK})
- Depth of the ring buffer (N_{buf})
- Minimum time interval between two triggers (t_{in})
- Time for data transfer to the next stage (t_{out})

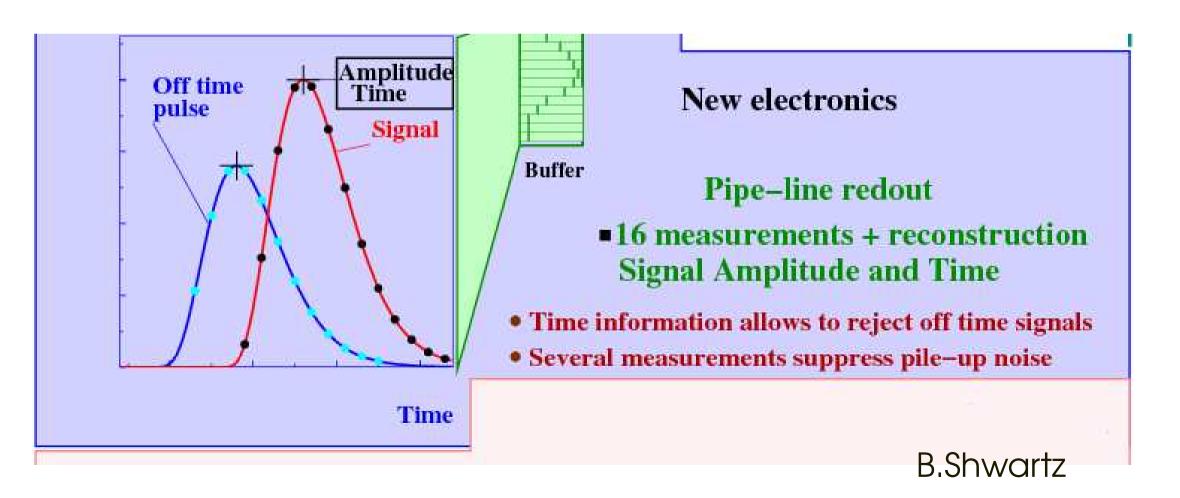

• Examples

- SVD (APV25): f_{SCLK} =42 MHz, N_{buf} =5, t_{in} =140 ns, t_{out} =20 μ s
- ECL (barrel): $f_{SCLK} = 2 MHz, ...$

Impact on deadtime

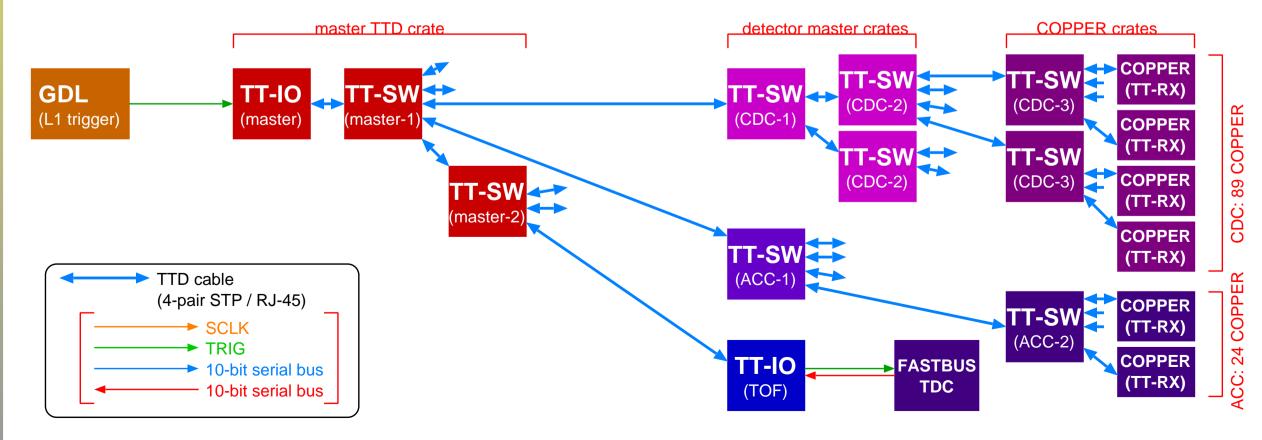
- Four parameters (f_{SCLK} , N_{buf} , t_{in} , t_{out}) determine the deadtime characteristics
 - e.g., 31.8 MHz clock for APV25 is unpreferable
 - For 20 kHz trigger rate, 31.8 MHz clock is OK
- Outer detectors should have better deadtime characteristics (if not, please let us know immediately!)

APV Trigger Simulation (2)

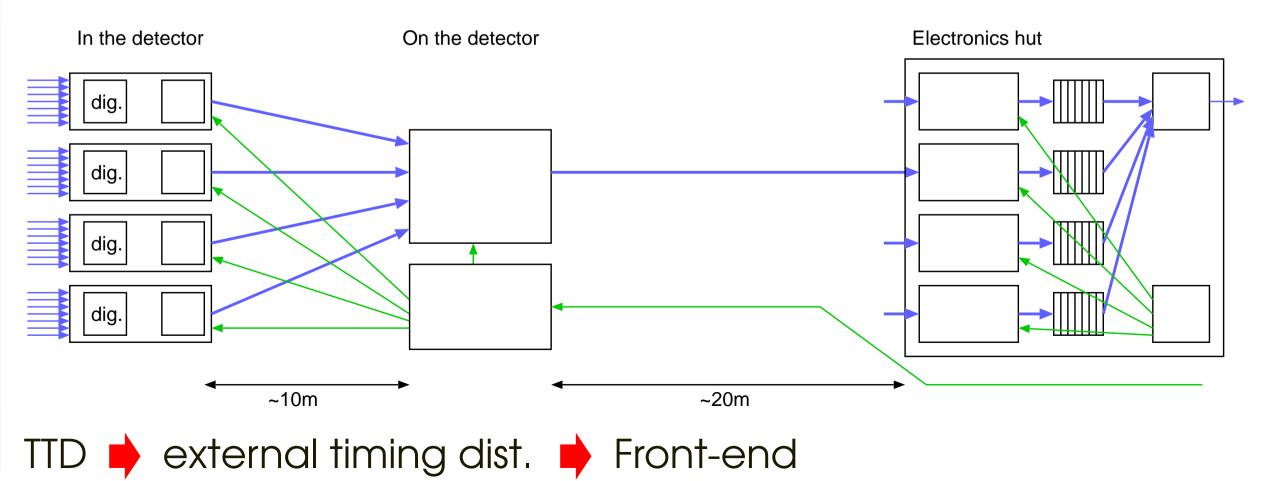


- Min Lost: trigger restriction (1) = too little distance
- FIFO Lost: trigger restriction (2) = too many pending readouts ٠

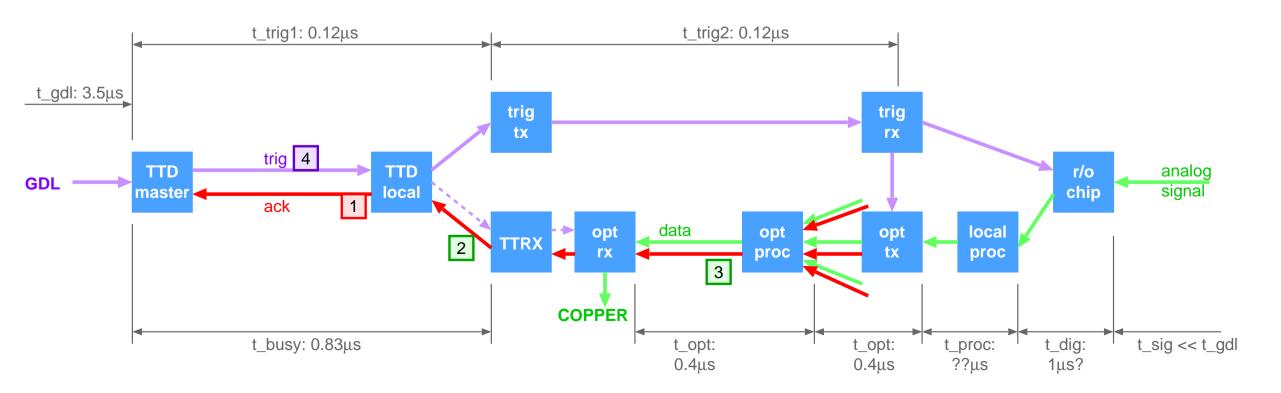
(M. Friedl)


Impact on slow readout

- Readout time is expected to be slow in ECL (and PXD)
 - Minimum buffer separation of 500 ns \times 16 sampling (8 μ s)
 - Two or more trigger have to share the same sample
 - For $t_{in} < 500 \text{ ns}$, the same samples have to be read out could be separated offline ($\sigma(t) \sim 100 \text{ ns}$ for 5 MeV)


Timing distribution 1 (to COPPER)

- Trigger and system clock (42 MHz) distributed to all COPPER through TTD system (TT-IO \Rightarrow (TT-SW)ⁿ \Rightarrow TT-RX)
- Modules are in operation, will also be used in Super Belle Common to every detector
- Serial-bus based control (BUSY signal, reset, etc)
- Trigger-busy handshake at Belle, need something better


Timing distribution 2 (to frontend)

- Most of digitization in/near the detector
- No COPPER crates outside the E-hut
 No dedicated BUSY collection line from front-end
- Data transfer and timing distribution provided by DAQ group Timing signals: clock (SCLK), trigger (TRIG), revolution (REVO) (but SVD will distribute by themselves)

Pipelined trigger distribution

- FIFO full status from frontend through COPPER to TTD RocketIO + serialbus latency $\sim 1.5 \ \mu s$
- Pipelined trigger handshake scheme (new)
 - Data integrity (no data-driven FIFO full handling)
 - TTD can issue N_{buf} (=5) triggers with at least t_{in} (~ 200 ns) interval before seeing the response
 - Response can be embedded in the RocketIO datalink using the "K charactor" of 8b10b encoding

System clock (jitter)

- Only TOP system requires < 10 ps clock-to-clock jitter (others should be fine with ~ 100 ps jitter)
 - DAQ receives SCLK from TOP and distribute to others (better than DAQ provides SCLK to TOP or use something else)
 - SCLK directly distributed on detector, not through E-hut
 - Beam pickup instead of RF clock?
- How about drift of the clock phase?
 - How much can be calibrated offline?
 - Phase-lock-loop between E-hut and detector
- RocketlO clock
 - High quality clock requirement (< 100ppm)
 - RF clock (127 MHz) is not good enough
 O(10h) lifetime in RocketIO link (tested in E-hut)
 - RocketIO will be fully asynchronous from the RF clock (driven by on-board Xtal)

System clock (frequency)

• SCLK 42 MHz (RF/12)

- Compatiblity with LHC technologies (AMT3, APV25, ...)
- No more reason? 32 or 63 MHz could be an option Electronics for $1/2^n$ has better performance than $1/(3 \times 2^n)$

• SCLK 32 MHz option?

- Introduces more latency in the TTD handshake
- APV25 allows longer L1 latency, at a cost of deadtime

• SCLK 63 MHz option?

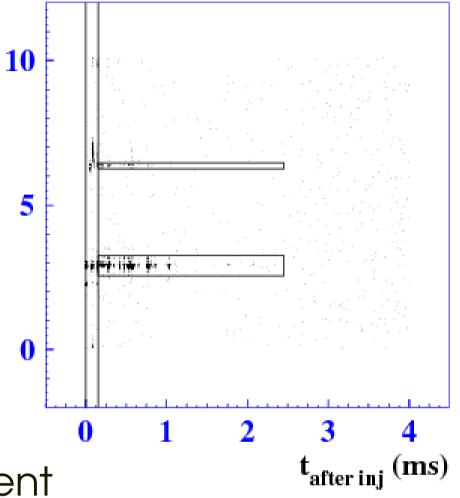
- COPPER and TTD? If it works, it reduces the latency
- Existing COPPER and TTD to be modified (replace Xtal)

Mixed SCLK system

- All three clocks (63/42/32 MHz) will be available, users can choose in the frontend and FINESSE SCLK or RCLK
- 42/32 MHz are generated from 63 MHz when needed

Injection veto deadtime

Injection noise


- Short component all over the ring
- Long component only in the injected bunch every 10 μs (two components?)

Injection veto for the L1 trigger

- 150 μs veto for short component
 10% times 2.5ms for long component
- 50 Hz injection \Rightarrow <u>~2% deadtime</u>

Injection effects on PXD?

- Takes 10 μ s to readout
- Always affected by the long component

t_{in circ} (µS)

Status / Plans

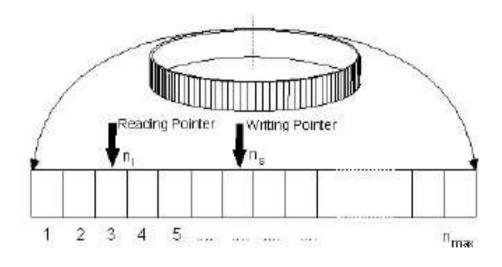
- Experiences have been gained
 - System control using serial bus (similar in RocketIO)
 - Multi clock domain operation (64 MHz sync'ed trigger and 42 MHz sync'ed readout)
- Test setup using TT-IO module
 - RocketIO characteristics have been studied
- Plans for module development
 - FINESSE with Virtex5 FPGA for various tests
 - new TT-IO (with Virtex5 FPGA) for better clock handling

Proposal

- Minimum interval between two triggers: $t_{in} = 200 \text{ ns}$
 - close to the APV25 limitation, requires duplicated ECL event
- Depth of the fast FIFO: $N_{buf} \ge 5$
 - APV25 limitation, enables data integrity with small deadtime
- Time to flush the fast FIFO: $t_{out} < 20 \ \mu s$
 - APV25 limitation for 42 MHz clock, still under discussion
 - Don't design anything slower
 An equivalent latency for a variable latency design
- Backend should not slow down for these requirements

The readout speed may not follow this model, e.g. when the latency is data-size dependent. It has to be simulated to meet the requirements.

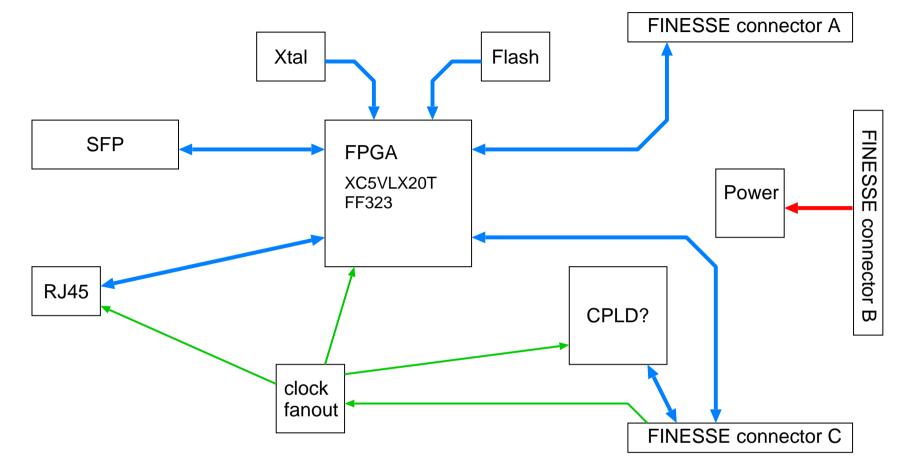
More material



APV25 Pipeline

- 192 pipeline cells (actually a ring buffer)
- After APV receives a trigger, the corresponding pipeline cells are labelled in an index FIFO in order not to be overwritten before the event is completely read out
- Index FIFO has 32 cells
 - → In worst case, 160 pipeline cells always remain active
- = 3.8µs @ 42.3MHz clock (RF/12)
 - \rightarrow 3.5µs max. latency for L1

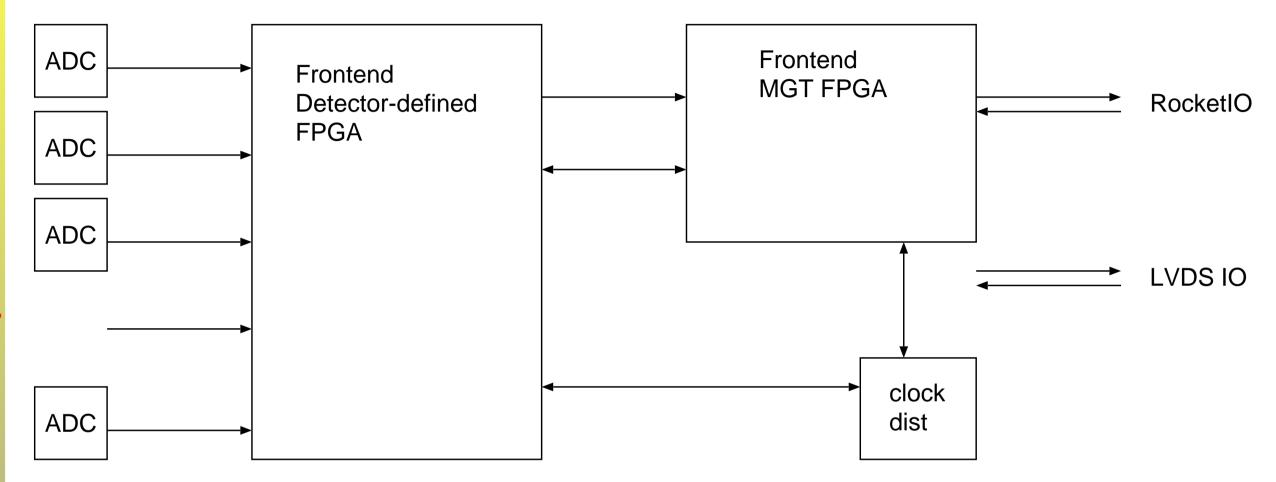
or


- = 5.0µs @ 31.8MHz clock (RF/16)
 - \rightarrow 4.7µs max. latency for L1

 Preferred by Iwasaki-san, but has implications on trigger rate (see below)

p.15

MGT-FINESSE



- Main components: Virtex-5, SFP and FINESSE connectors
- RJ-45 for the trigger distribution option 1
 Xtal for the asynchronous RocketIO option
- CPLD for on-the-fly reprogramming of Virtex5
- 127 MHz received through RCLK line (SCLK is 42.33 MHz)

FINESSE interface

 2× 40-pin connectors (+ 36-pin connector for ±5V and +3.3V) 	FF0 FF1 FF2 FF3 FF4	IRSTB IENA IO2 TYP0 TYP1
 7-bit address, 8-bit data for control from/to COPPER 	FF5 FF6 FF7 FF8 FF9 FF10	TYP2 TYP3 TAG0 TAG1 TAG2
 32-bit data to COPPER FIFO FIFO write clock from FINESSE (could be RXUSRCLK2) 	FF10 FF11 FF12 FF13 FF14 FF15 FF16 FF17	TAG3 TAG4 TAG5 TAG6 TAG7 LD0 LD1 LD2
 Two independent LVDS clock lines SCK = 42.33 MHz, also used in COPPER RCK = user deefined 	FF18 FF19 FF20 FF21 FF22 FF23 FF24 FF25	LD3 LD4 LD5 LD6 LD7 LA0 LA1 LA2
 Several pins can be used for other purpose by reprogramming TT-RX (102, IENA, ABRT, TYP[03]) 	FF26 FF27 FF28 FF29 FF30 FF31 GATE FRSTB FWENB FWENB FWCLK FFUL NWFF ABRT BUSY	LA2 LA3 LA4 LA5 LA6 LRW CSB TRGP TRGN REVP REVN REVN RCKP RCKN SCKP SCKN

Frontend interface

- A separate FPGA+clock receiver on the frontend card
- Interface to the detector logic: same as FINESSE

Protocol for RocketIO (rough idea)

- Need a very simple protocol
- 8b10b encodign/decoding (64b66b is not needed)
- 32-bit word, data driven at a half clock rate (USRCLK2)
- Packets from front-end to FINESSE
 - Sync packet (SYN) RF revolution signal
 - Trigger info packet
 - Clock phase correction packet?
 - Other request packets
- Packets from front-end to FINESSE
 - Interrupt packet: single word with K-code (ACK/NAK/RST)
 - Sync packet (SYN)
 - Data packet: one frame per one event
 - Status packet: return for the query request, not to mix with the data packet