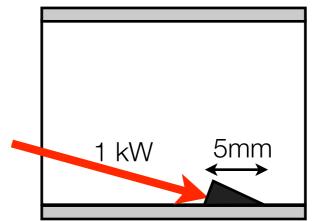
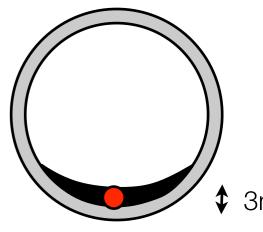
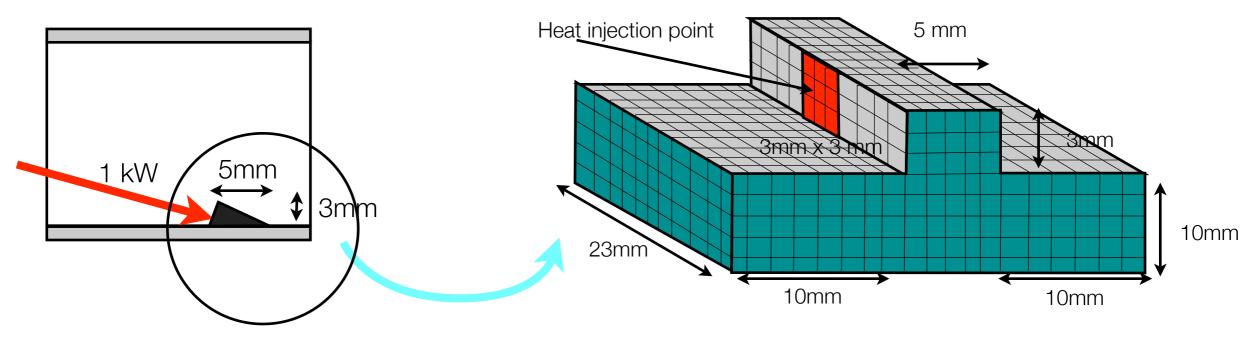

Heat properties of an IP chamber (Or maximum heat dissipation in the IP region)

10 Dec. 2008 Toru Tsuboyama (KEK)


Total heat removed with the IP chamber

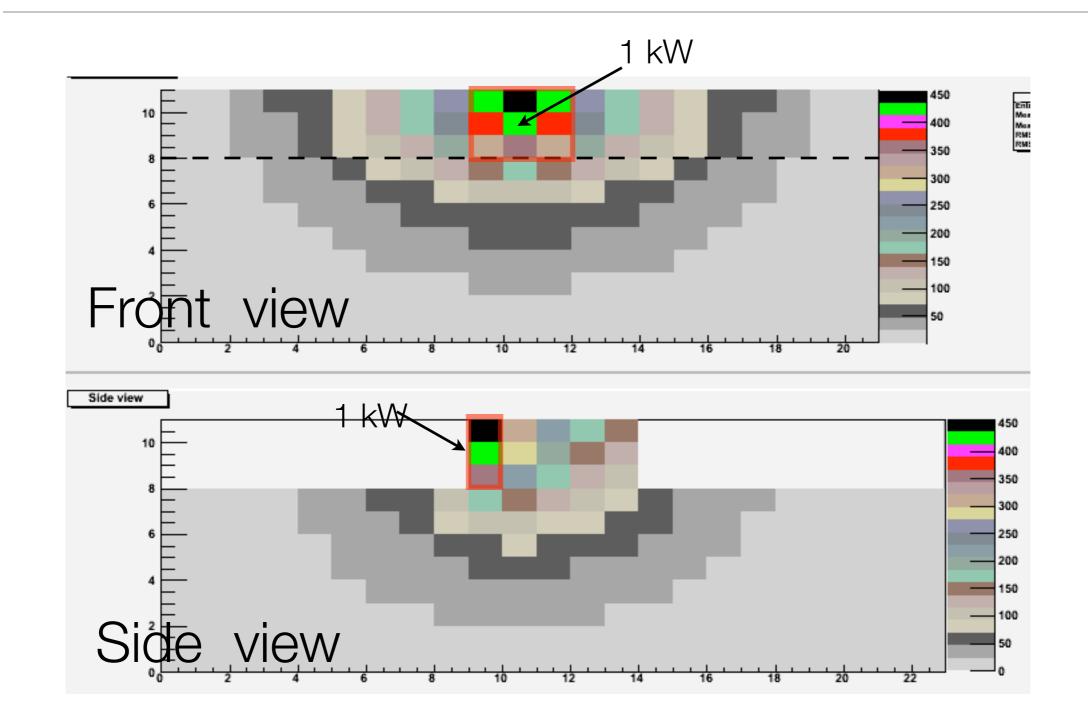

- The Belle IP chamber can be cooled as follows.
- For the beryllium part, 1 liter/min water may be the maximum if we keep 1 mm water layer thickness.
- If we allow an increase of the coolant temperature: Δt=5 °C, the heat corresponds to P=5*4.2*1000/60=350 W.
- If the length of the beryllium part is shortened, we can flow more water and the heat generation would be smaller, too.
- For the support part, the flow rate of 5 liter/min may be possible on either side.
- With $\Delta t=10^{\circ}C$, total power dissipation is P=7 kW.

Heat at the synchrotron light mask


- Simplest calculation: 1 Dim. model.
- Temperature increase is $\Delta T = P \cdot L/S/\sigma$, where P: power, L: length, S: area and σ : heat conductivity.
- Assumption: P=1 kW heat lost at the 3 mm diameter spot. S= πr^2 =0.07 cm². L = 0.3 cm (being half of the maximum length).
- Copper: σ =4.0 W/°C/cm, Tungsten: σ =1.7 J/°C/cm.
- Consequently, ΔT=1000*0.3/0.07/4 ~ 1200 °C for Cu and ΔT= 1000*0.3/0.07/1.7 ~ 2500 °C for W.
- 1 KW power dissipation at a 3 mm diameter heat spot is out of question.

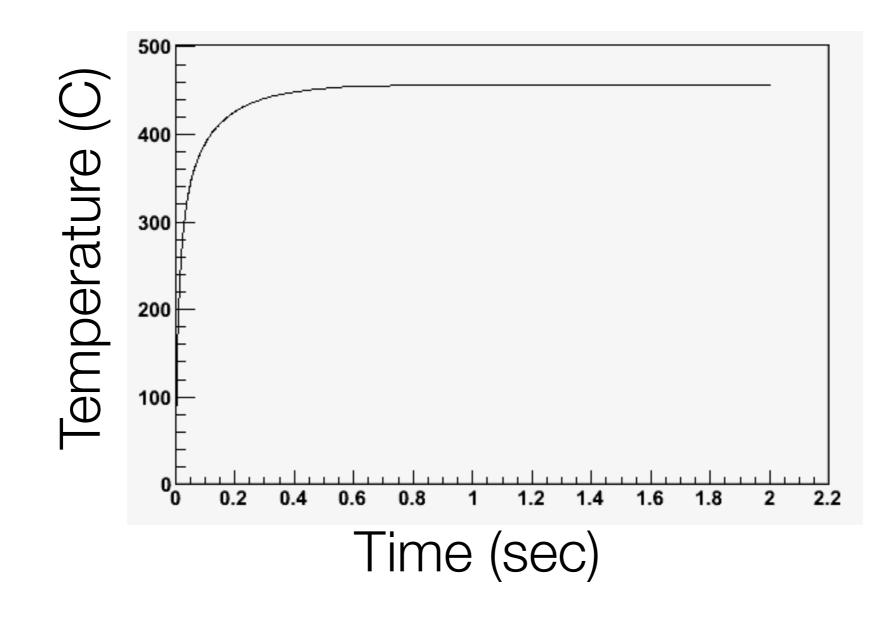
3D calculation

- The heat differential equation is solved by a 3D discrete finite difference method.
- The following model was made and calculated.
- The bottom surfaces are connected to a heat sink (0 °C)
- The other surfaces are heat insulated.
- Calculation was done with equal mesh size: 1 mm in x,y,z direction.


Result

- The temperature distribution Δt for the center slice after equilibration (in one second) is shown below.
- The temperature goes up to $\Delta t = ~450 \ ^{\circ}C$.

413 457 413 312 344 312 193 133 q g 1 kW 424 275 - 19 17 14 q


1 kW

Visualize

Time evolution

- Highest temperature point
- Within 1 sec. The tip is heat up to 500 degrees.

Summary

- Beryllium chamber
 - 350 W of heat HOM+mirror current can be removed in the beryllium chamber.
 We need 2 mm thick beryllium + 1 mm water channel in this case
- The support (conical) part
 - Up to 7 kW of heat can be removed.
 - If the heat is large, it must be uniformly distributed.
 - If the heat is concentrated to a particular position the temperature raise might be dangerous.
 - We need reliable corrosion protection as the flow will be completely turbulent.
- Synchrotron Light mask
 - The temperature goes up to $\Delta t = -500 \,^{\circ}C$ with 1 kW heat in a 3mm x 3 mm spot.
 - The heat dissipation to the mask should be of order 100 W.
 - Cooling by radiation is not included, however, it may help the cooling at such high temperature.
 - Next step: reliable calculation by ANSYS or a similar tool.

Appendix

Material	Density (g/cm³)	Heat Cap. (J/K/g)	Heat Cap. (II) (J/K/cm ³)	Heat cond. (W/K/cm)
H ₂ O	1	4.2	4.2	
C_nH_{2n+2}	0.75	1.6	1.2	
Cu	9.0	0.38	3.4	4.0
Ag	10.5	0.23	2.4	4.2
Ta	16.6	0.15	2.5	0.57
W	19.3	0.13	2.5	1.7