TOP counter R&D

TOP module

2700

- A module supporting quartz and PMT
 - Quartz radiator
 - Support by aluminum honeycomb box
 - Black box
 - MCP-PMT
 - Assemble with front-end elec.
 - Connect elec. part to honeycomb
 - Not glue PMT with quartz
- Prototype construction
 - 1st step) quartz 1m (forward, backward part)
 - Beam test in June
 - 2nd step) quartz 2m + focus mirror
 - Beam test from this week

500

Previous beam test

- At Fuji test beam line in June
- Prototype of forward part

- Using real size quartz and MCP-PMT
 - MCP-PMT: Multi-alkali p.c., C.E.=60%
- Check
 - Ring image
 - Number of photons
 - Time resolution

Beam test set up

Beam test results

- **Ring Image**
 - Similar with Simulation
- Number of photons
 - N~20; as expected
 - Tail due to EM shower in triggers
- Time resolution
 - Main part; expected time resolution
 - Rate of tail seems large.
 - Not in MCP-PMT and readout

Data

160

180

200

beam center

15

100

260

25ps/count

120

140

160

200

220

240

25ps/count

180

Beam test results

Next beam test

Ring image with focusing TOP

- Quartz ~2m long
- Focusing mirror
- MCP-PMT
- Check focusing property
 - Improvement of time resolution
- Test in December
 - At Fuji test beam line

- Trigger counters
 - 1 scintillation counter
 - Timing counters
 - TOF counter with MCP-PMT
 - <10ps resolution</p>
- TOP counter
 - Slide and rotate
- Tracking systemMWPC

Focusing TOP development

Quartz radiator

- Size; 91.5 x 40 x 2 cm³ x2
- Focusing mirror
- Glued
 - UV cure type (NOA63)
 - Flatness; ~0.2mrad
 - Laser depth meter
 - Laser reflection at mirror

0.05~0.1mrad

<u>0.2mrad</u>

Aluminum honeycomb structure

Focusing mirror

Focusing TOP development (2)

- MCP-PMT
 - Almost same as previous one
 - Multi-alkali photo-cathode
 - 11 PMTs without AI protection
 - PMT box
 - New AMP + CFD board
 - TTS<40ps with MCP-PMT</p>
 - Backup; AMP + NIM discriminator
 - Same as previous beam test

- Readout by CAMAC TDC, ADC
 - Same as previous

MCP-PMT R&D

Lifetime test

- Multi-alkali p.c. with Al protection
- With square-shape MCP-PMT
- \rightarrow Short lifetime, position dependence
- Difference with round-shape PMT
 - Enough lifetime (>10 super-B year)
 - Need to confirm the difference
 - Internal structure
 - Material difference?
 - Need to confirm the lifetime of round-shape MCP-PMT

Time in Super-B factory (year)

Relative Q.E.(sensitivity) 9.0 8.0

0.2

Summary

Previous beam test in June

- Prototype for forward part
- Good ring image, number of photons (~20photons)
- Good time resolution of 40~60ps. However, there is a unknown large tail.
 - Cross-talk or fluctuation of the propagation?
- Next beam test with focusing TOP prototype
 - Beam test from this week at Fuji beam line
 - Confirm chromatic effects
 - Time resolution degradation due to chromatic dispersion
 - Functionality of focusing scheme
- Photon-detector is key point.
 - Need to establish production and lifetime

Quartz radiator

- Size; 915 x 400 x 20 mm
- Flatness; <2µm</p>
- Roughness; <0.5nm</p>
 - By Okamoto optics work, inc.
- Support by Aluminum honeycomb panel
 - 1cm thickness
 - With plungers
 - Keep quartz in air
 - ~1kg/plunger on honeycomb
 - ~2.5kg/plunger on side panel

PMT performance (TTS)

- Test with pulse laser
 - single photon level
- Readout
 - PMT base
 - HV divider, AMP
 - LED (Philips, 350MHz)
 - CAMAC TDC (25ps/bin)

■ 35~40ps

PMT performance (QE)

Measure by monochrometer

- Enough QE
 - Some of them are bad. Need to improve.

CFD and PMT box

- HV divider + AMP + Discriminator
- Smaller size
 - 29mm^w→28mm^w
- Prototype
 - Fast AMP (MMIC, 1GHz, x20)
 - Fast comparator (180ps propagation)
 - CFD with pattern delay
- Performance
 - Test pulse
 - ~5ps resolution
 - MCP-PMT
 - σ<40ps
 - Working well

Performance with CFD

<u>setup for confirming CFD ability</u>

Beam test results

TDC distribution (near)

TDC distribution (center)

TDC distribution with pulse laser

Measure the TTS of MCP-PMT

- With same readout electronics used at the beam test
- With Pico-sec Light Pulsar (400nm)

