

APV25 for SuperBelle SVD

M.Friedl HEPHY Vienna

APV25

- Developed for **CMS** by IC London and RAL (70k chips installed)
- 0.25 µm CMOS process (>100 MRad tolerant)
- 40 MHz clock (adjustable), 128 channels, analog pipeline
- 50 ns shaping time (adjustable)
- Low noise: 250 e + 36 e/pF
 - cf. BEETLE (LHCb) 497 e + 48 e/pF
 - cf. SVX4 (CDF,D0) 728 e + 56 e/pF
- Multi-peak mode (read out several samples along shaping curve)

APV25 Pipeline & Triggers

APV25 Pipeline

- **192 pipeline cells** (actually a ring buffer)
- After APV receives a trigger, the corresponding pipeline cells are labelled in an index FIFO in order not to be overwritten before the event is completely read out
- Index FIFO has 32 cells

 \rightarrow In worst case, **160 pipeline cells** always remain active

• = 3.8µs @ 42.3MHz clock (RF/12)

 \rightarrow 3.5µs max. latency for L1

or

• = 5.0 μ s @ 31.8MHz clock (RF/16) \rightarrow 4.7 μ s max. latency for L1

 Preferred by Iwasaki-san, but has implications on trigger rate (see below)

APV25 Triggers

- APV controller ("NECO") generates 2 consecutive trigger symbols ("100") to APV from L1, resulting in 6 samples along shaped waveform
 → allows peak time reconstruction (few ns precision, see talk by C.I.)
- No triggers allowed during 6 clocks after L1

APV25 Trigger Restrictions

(1) Minimum L1 distance of 6 APV clocks

(2) Maximum pipeline index FIFO filling of 32

Let's see what (2) means...

APV Output and FIFO Filling (1)

• **Single L1 trigger** resulting in 6 samples

APV Output and FIFO Filling (2)

• **Two L1 triggers** resulting in 12 samples

APV Trigger Simulation (1)

- Input: CLK, L1 rate
- Model: APV25 state machine, exponential trigger distribution
- Output: FIFO filling histogram, trigger loss, Poisson distribution to check randomness of simulated triggers

Download:

<u>http://belle.hephy.at/apvtrg.zip</u> (needs Labwindows/CVI 8.1 runtime engine from <u>http://ni.com</u>)

APV Trigger Simulation (2)

Trigger Loss @ 42.4MHz

Trigger Loss @ 31.8MHz

- **Min Lost**: trigger restriction (1) = too little distance
- **FIFO Lost**: trigger restriction (2) = too many pending readouts
- Nakao-san wishes <3% dead time @ L1=30kHz
- \rightarrow OK (0.87%) for 42.4MHz clock, slightly higher (3.43%) at 31.8MHz

Chip-on-Sensor Concept

- Using 6" DSSDs (~12.5 cm long, up to ~4 cm wide)
- Every sensor is read out individually (no ganging)
 - Edge sensors (green) are conventionally read from side
 - Center sensors (red) use chip-on-sensor concept (layers 3-5)

Origami Concept

- Extension of chip-on-sensor to double-sided readout
- Flex fan-out pieces wrapped to opposite side (hence "Origami")
- All chips aligned on one side \rightarrow single cooling pipe

Origami Layout

3D Rendering

APV25 Purchase

- SuperSVD needs about 2500 normal + 2500 thinned chips (for chip-on-sensor) including spares
- Enough tested APV25 chips are in stock @ IC London
- Purchase procedure of 4000 APV25 chips in JFY 2008 in underway
- 1000 more will be purchased next year (due to administrative limits)
- 1 APV25 costs **28 CHF** (~18 €, ~2150 ¥, ~23 \$)
- Thinning will be taken care of by HEPHY Vienna
 - Existing chips are ~300 μ m thick, thinning target ≤ 150 μ m
- In parallel, discussion for a readout chip development by IDEAS has started for a future upgrade of SuperSVD
 - Based on APV25 design

Summary & Outlook

- **APV25 chip** (developed for CMS) fits for SuperSVD
- Pipeline length and dead time simulation @ 30kHz Poisson triggers:
 - 0.87% @ 42.4MHz clock, 3.8µs pipeline
 - 3.43% @ 31.8MHz clock, 5.0µs pipeline
- Trade-off between wishes of Nakao-san and Iwasaki-san
- "Origami" concept for low-mass double-sided readout with cooling
- We will assemble such a module in the near future

BACKUP SLIDES

Comparison VA1TA – APV25

VA1TA (SVD2)

- Commercial product (IDEAS)
- Tp = 800ns (300 ns 1000 ns)
- no pipeline
- <10 MHz readout
- 20 Mrad radiation tolerance
- noise: ENC = 180 e + 7.5 e/pF
- time over threshold: ~2000 ns
- single sample per trigger

APV25 (SuperSVD)

- Developed for CMS by IC London and RAL
- Tp = 50 ns (30 ns 200 ns)
- 192 cells analog pipeline
- 40 MHz readout
- >100 Mrad radiation tolerance
- noise: ENC = 250 e + 36 e/pF
- time over threshold: ~160 ns
- multiple samples per trigger possible (Multi-Peak-Mode)

Shaping Time and Occupancy

Ganged Sensors Read Out with APV25

• Prototype module with 2 partially ganged DSSDs

single

n-side

13.9

18.9

p-side

13.1

19.9

 Beam test result shows that already ganging of 2 sensors is problematic
 Cluster SNR
 9.4
 10.1
 Single Strip SNR
 13.5
 13.4

Flex_Module Measurement Results

 Beam test result shows that chip-on-sensor (n-side) 	t	Flex_Module		Conventional (single sensor)	
delivers excellent SNR		p-side	n-side	p-side	n-side
	Cluster SNR	13.8	18.4	13.1	13.9
	Single Strip SNR	20.9	25.4	19.9	18.9
		E O	Her I		

Origami Material Budget

• X₀ comparison between conventional and chip-on-sensor:

Conventional (double layer kapton)

Layer	Material	X0 [mm]	Thickness [mm]	Percentage	Area coverage	Averaged Percentage
Sensor	Silicon	93.7	0.3	0.32%	100.0%	0.320%
Fanout	Polyimide (2 layer of 50um each)	300.0	0.1	0.03%	96.3%	0.032%
	Copper (10um)	14.0	0.01	0.07%	50.0%	0.036%
	Nickel (top: 1.3um)	14.3	0.0013	0.01%	50.0%	0.005%
	Gold (top: 0.8um)	3.4	0.0008	0.02%	50.0%	0.012%
Ribs	Zylon (0.5mm wide)	300.0	5	1.67%	3.7%	0.062%
Glue	Araldite 2011 / Double sided tape	335.0	0.05	0.01%	96.3%	0.014%
					0.480%	

DSSD Chip-on-Sensor (4-layer kapton)

Layer	Material	X0 [mm]	Thickness [mm]	Percentage	Area coverage	Averaged Percentage
Sensor	Silicon	93.7	0.3	0.32%	100.0%	0.320%
Isolation	Rohacell (Degussa)	5450.0	1	0.02%	96.3%	0.018%
Hybrid	Polyimide (4 layers of 50um each)	300.0	0.2	0.07%	96.3%	0.064%
	Copper (4 layers of 5um each)	14.0	0.02	0.14%	64.7%	0.092%
	Nickel (top: 1.3um)	14.3	0.0013	0.01%	64.7%	0.006%
	Flash Gold (top: 0.4um)	3.4	0.0004	0.01%	64.7%	0.008%
Flexes	Polyimide (1 layer of 25um)	300.0	0.025	0.01%	56.3%	0.005%
	Copper (1 layer of 5um)	14.0	0.005	0.04%	28.1%	0.010%
	Nickel (top: 1.3um)	14.3	0.0013	0.01%	28.1%	0.003%
	Flash Gold (top: 0.4um)	3.4	0.0004	0.01%	28.1%	0.003%
8 * APV25	Silicon	93.7	0.1	0.11%	21.4%	0.023%
SMDs	SMD	50.0	0.4	0.80%	0.8%	0.007%
Sil-Pad	Sil-Pad 800 (Bergquist)	200.0	0.127	0.06%	11%	0.007%
Pipe	Aluminum (D=2.0mm, wall=0.2mm)	89.0	0.56	0.63%	7%	0.047%
Rib	Zylon (0.5mm wide)	300.0	5	1.67%	1.9%	0.031%
Glue	Araldite 2011	335.0	0.2	0.06%	50%	0.030%
Cooling	Water	360.5	1.26	0.35%	13%	0.047%
					Total	0.719%

- +50% increase in material, but also huge improvement in SNR
- Trade-off between material budget and SNR
- According to simulation, additional material is prohibitive in 2 innermost layers, but no problem for layers 3-5 → OK with layout