Software

T.Hara (Osaka)

SimulationReconstruction

Simulation

There is no progress, sorry.

- 1.Ocm beam pipe + 6-lyr SVD are installed
 → SVD part : thnx to H.Kim
- Reconstruction w/ Belle analysis tools
 → SVD part : thnx to K.Trabelsi
- Inner two layers is being replaced with PXD
 → PXD part : thnx to H.HoedImoser
- Beam pipe : design has not been fixed yet ...

Reconstrution

(K.Trabelsi)

reported in the 1st proto-Collaboration meeting

minimum reconstruction tools work.

Tracking Simulation with Pixel Detector and Related Software

Alexei Raspereza

Belle Detector Upgrade Meeting, 4.12.2008

Outline

- Software tools
- Tracking system of sBelle
- Simulation/optimization studie
- Conclusion

- Two separate PXD detectors differing by the number of layers are considered
- Two new **databases** (subdectectors) in local MySQL were added.
- New geometry driver was written

Used values:

_	#	r (<i>cm</i>)	sensor (cmxcm)	# sensor in z	#ladders (around phi)	thickness (µm)
ptior	1	1.7	7.1x0.94	2	12	50
1 st Ol	2	2.0	8.4x1.10	2	12	50
•						
ion	1	1.2	5.1x0.66	2	12	50
opti	2	1.7	7.1x0.94	2	12	50
2^{nd}	3	2.0	8.4x1.10	2	12	50

SuperBelle Double Sided Silicon Detector in Mokka

 Double Sided Strip Detector (DSSD) is implemented within the same driver as pixel vertex detector

Used values:

	#	r (cm)	sensor (cmxcm)	# sensor in z	#ladders (around phi)	thickness (µm)
S	1	4.5	8.0x2.8	3	12	300
laye	2	7.0	7.6x4.0	5	12	300
SD	3	10.0	9.0x2.8	5	24	300
00	4	13.8	7.6x4.0	6	24	300

Simplified implementation of DSSD

⇒ each layer is represented by single Si plane, DSSD signals are simulated assuming pixel readout scheme (no ghost hits are produced) Pad size (r- ϕ ,z) : 50×150 μ m²

Gas mixture: He/C₂H₆ (50:50)

Parameters envisaged for superBelle

- Radius of inner boundary
- Radius of outer boundary
- Radius of the innermost sense wire
- Radius of the outermost sense wire
- Number of layers
- Effective radius of dE/dx measurements 948 mm

- Simplified digitization procedure:
- G4 tracking

150 mm

1150 mm

172 mm

1120 mm

58

- ⇒ track intersection with measurement cylindrical layer
- ⇒ 3D point is smeared according to the average spatial point resolutions obtained in Belle

 $\sigma(r-\phi) = 130\mu m$ $\sigma(z) = 800\mu m$

Performance studies with single particles

- Single muons
 - minimized bremstrahlung
- Simulation is done with G4 particle/gun
- Momentum scan

- p = 0.2, 0.4, 0.7, 1.0, 2.0 GeV/c

- Polar angle scan within acceptance
 - $\theta = 20, 40, 60, 80^{\circ} \text{ and } 180^{\circ} \theta$
- Uniform smearing in ϕ
- Performance is evaluated in terms of impact parameter (IP) resolutions
 - Resolution is defined as RMS of the region around central value of IP distribuition, containing 90% of events

Other tracking tool (A.Raspereza)

Pattern recognition & track reconstruction procedure

3.

2.

- Fit CDC tracks with Kalman filter
- Three different methods to combine patrec in CDC and Si tracker
 - 1. Perform separate patrec in Si tracker ; combine CDC and Si tracks ; refit combined tracks
 - 2. Propagate track back into Si tracker; pick up hits on backward helical road; refit track each time new hit is added
- 3. Perform separate patrec only in SVD, combine CDC & SVD tracks ; extrapolate track back into area of PXD; assign hits on backward helical road; refit track after inclusion of new hits

Performance studies - ee→BB sample

Track Finding Efficiency Comparison of methods 3 layer PXD Option

Spoilt Track Fraction Comparison of methods 3 Layer PXD Option

Performance studies - ee→BB sample

Track Finding Efficiency 3^d Reconstruction Method Comparison between PXD Options

Optimization of geometry for slanted-part or disk-type

Otagiri (Niigata)

Summary

- For G4 simulation, I'll be back to work soon
- For reconstruction
 - tracking tools used in Belle work
 - hard to implement tons of geometery designs in both sim/rec
 - SVD track finding is not ready ...
 - tracking tools w/ ILC software also work
 - is it possible to implement the slated-part ? (now assume cylinder)
 - SVD+PXD track finder works
 - \rightarrow powerful tools for optimization of the detector
 - \rightarrow but need to design the class object carefully
- need to decide the SVD design
 - 4-layer SVD+2-layer PXD at le
 - Slanted-part or Disk-type ?

at least, the schedule for SVD design should be decided ! time is ticking ...

Sources of backgrounds at Belle/superBelle

- Synchrotron radiation
 Particle background (beam-gas interactions, intra-bunch scattering)
- > Background rate estimate for Belle : $r_{BC} \approx 23500 \text{ s}^{-1} \text{mm}^{-2}$ (inner layer)
- Factor of 6 increase in background at superBelle (initial phase)
- 1/R² dependence of background

Occupancy = $r_{BG} \cdot < Cluster_size > \cdot Pixel_area \cdot \tau_{int}$

R [<i>cm</i>]	Bkgd [s ⁻¹ mm ⁻²]	Occupancy
1.2	430000	1.6%
1.7	210000	0.8%
2.0	150000	0.6%