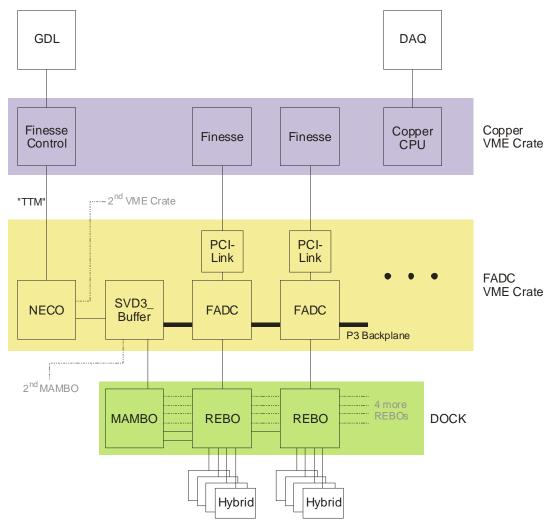


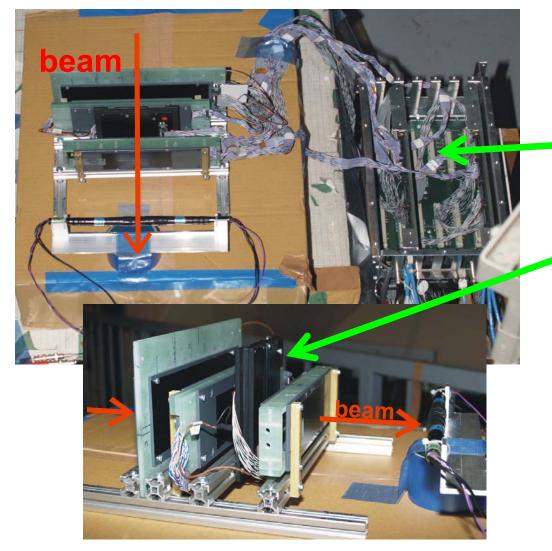
DAQ Scheme and Beam Test Results

H. Asano, M. Friedl, H. Hyun, T. Higuchi, <u>C. Irmler</u>, Z. Natkaniec, W. Ostrowicz, M. Pernicka, T. Tsubuyama



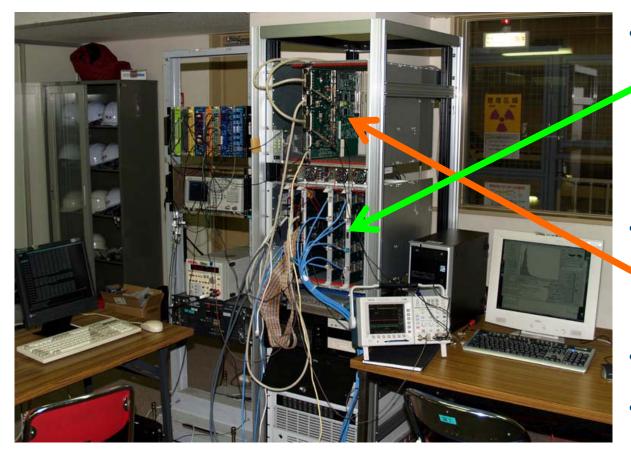
Contents

- DAQ Scheme
- Beam Test Setup
- Measurements Overview
- Beam Test Results
 - FADC system standalone
 - FADC + FINESSE + COPPER
- Summary


Super Belle SVD DAQ Scheme

- Designed for SVD3 Ugrade
- Hybrid: 4 APV25 chips
- Dock
 - 1 Mambo
 - 2 x 3 Rebo (p- and n-side)
- FADC VME Crate
 - 1 Neco
 - 1 Buffer for 2 Dock
 - 12 FADC
- Copper VME Crate
 - 2 Finesse on each Copper
- Prototypes of FADC system exist and were already tested in several beam tests
- Whole DAQ chain was tested in current beam test.
- However: SVD4 will be ~10 times bigger

Beam Test Setup - Frontend



Institute of High Energy Physics

- Beam:
 - 2 and 3 GeV e
 - ~ 1 Hz trigger rate
- Dock:
 - 1 Mambo
 - 2 Rebo
- Modules:
 - JP Module
 - Micron Module
 - UV Module
 - Flex Module
- Trigger:
 - Scintillator
- 30 APV25 in total

Institute of High Energy Physics Beam Test Setup - Backend

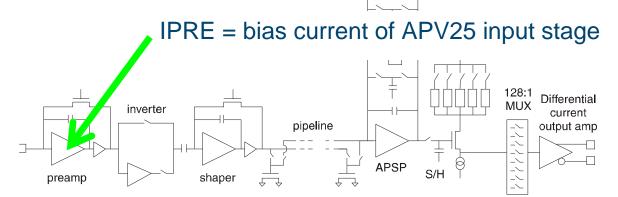
- FADC system:
 - 1 x Neco
 - 1 x Buffer
 - 2 x FADC
 - APVDAQ PC for control and VME readout
- Copper / Finesse:
 - 1 x Copper
 - 2 x Finesse
 - DAQ PC
- Kennwood powersupply
- Some trigger-logic

Many thanks to Higuchi-san for preparing the DAQ PC and the Copper readout software.

11 Dec. 2008

Beam Test - Measurements

- FADC system standalone (VME readout):
 - Nominal APV25 settings, 40 MHz, Tp = 50 ns (reference run)
 - Higher preamplifier bias current (IPRE) of the APV25 to study SNR and power consumtion
 - 31.8 MHz clock frequency
- Full DAQ system (FADC + Finesse + Copper):
 - First time that FADC and Finesse / Copper was used together
 - Verify the interface between FADC and Finesse (clock, trigger, handshaking, event number, CRC)
 - Readout via Copper-DAQ and VME in parallel to compare data
 - Speed test


Institute of High Energy Physics

Doubled IPRE

- higher IPRE
- higher gain
- better SNR
- but also more power dissipation

- Measurements with doubled IPRE:
 - after switching on:
 - ~10% lower noise (and thus better SNR)
 - ~40% more power consumtion @ 1.25 V plane
 - after running several hours (modules are not cooled):
 - warm up
 - same noise level as before, benefit was eaten by higher temperature
 - further measurements with proper cooling are necessary
 - we plan to do this with our Origami module next year

Operation with 31.8 MHz clock

- Max. L1 Trigger latency allowed by APV25:
 - 3.8 µs @ 42.3 MHz
 - 5.0 µs @ 31.8 MHz preferred by **Iwasaki-san** (see talk by M. Friedl)
- Before, we never operated APV25 with a clock lower than 40 MHz
- Standalone run of FADC system at 31.8 MHz
 - worked fine
 - proper signals
 - same SNR observed
- We also operated the FADC system with 31.8 MHz together with Copper / Finesse (modified firmware) at 42.3 MHz
 - no problems observed
 - data are consistent

Signal, SNR, Time-Resolution

CERN SPS June 2008: standard settings, Tp = 50 ns, 40 MHz

120 GeV/c π+	Micron		JP single		UV		Flex	
	p-side	n-side	p-side	n-side	p-side	n-side	p-side	n-side
Average cluster width	1.67	1.13	2.31	1.92	2.21	1.88	2.28	1.91
Cluster SNR	12.6	15.1	12.7	13.9	23.6	24.0	13.8	18.4
Time resolution [ns]	3.91	3.07	3.51	2.77	2.58	1.23	3.52	1.95

KEK Fuji Nov. 2008: standard settings, Tp = 50 ns, 40 MHz

	Micron		JP single		UV		Flex	
	p-side	n-side	p-side	n-side	p-side	n-side	p-side	n-side
Average cluster width	1.77	1.15	2.34	1.83	2.36	1.91	2.34	1.89
Cluster SNR	12.6	14.9	12.9	14.5	22.1	22.7	12.8	17.9
Time resolution [ns]	3.88	3.07	3.51	2.73	2.49	1.39	3.77	2.02

We got almost identical results for both "doubled IPRE" and "31.8 MHz" runs, respectively.

Institute of High Energy Physics

Signal-to-Noise-Ratio

Preliminar Signal, SNR, Time-Resolution

Values of all measurements and modules show a common trend 20 Time-Resolution decreases with SNR **Cluster SNR** 15 KEK Nov 08 standard Peak time precision vs. SNR KEK Nov 08 doubled IPRE SPS Jun 08 standard 5 KEK Nov 08 31.8 MHz 6 KEK Nov 08 standard KEK Nov 08 doubled IPRE SPS June 2008 5 KEK Nov 08 31.8 Mhz p-UV-51 p-JP-single p-Micron p-Flex n-JP-single n-Micron n-UV-51 4 Trms [ns] 3 SNR is almost identical in all cases 2 further IPRE studies with cooling proper operation @ 31.8 MHz 1 0 15 20 25 5 0 10 30 **Cluster SNR**

25

Christian Irmler (HEPHY Vienna)

n-Flex

FADC – Finesse/Copper Tests

- 1. Operate FADC with clock and trigger propagated by Finesse
 - worked w/o problems \rightarrow ok
- 2. Data transfer from FADC to Finesse
 - Finesse got data \rightarrow ok
- 3. Readout of data via Finesse/Copper and VME in parallel and comparison
 - data match
 - few minor issues (now solved)
- 4. Test and varify the interface (dataflow) between FADC and Finesse
 - few issues concerning control lines (now largely solved)
- 5. Speed test

FADC – Finesse/Copper – Data Issues

• Event Number (EN):

- − Finesse only delivered LSB \rightarrow solved
- Offset of 1 between Finesse and FADC
- Finesse increments EN two clocks after trigger
 - NECO reads it too late
 - needs Firmeware modification, but solvable

• Checksum (CRC):

- Transfered at different location as expected from Finesse \rightarrow solved
- Values did not match \rightarrow solved

FADC – Finesse/Copper – Dataflow Control

- ADC-BUSY
 - was not implemented by FADC
 - Firmware modified \rightarrow solved
- FINESSE-BUSY → works
- ADC-ERR and ADC-RES
 - are not implemented yet
 - behavior has to be defined
- all other control lines are working well

FADC – Finesse/Copper Speed Test (1)

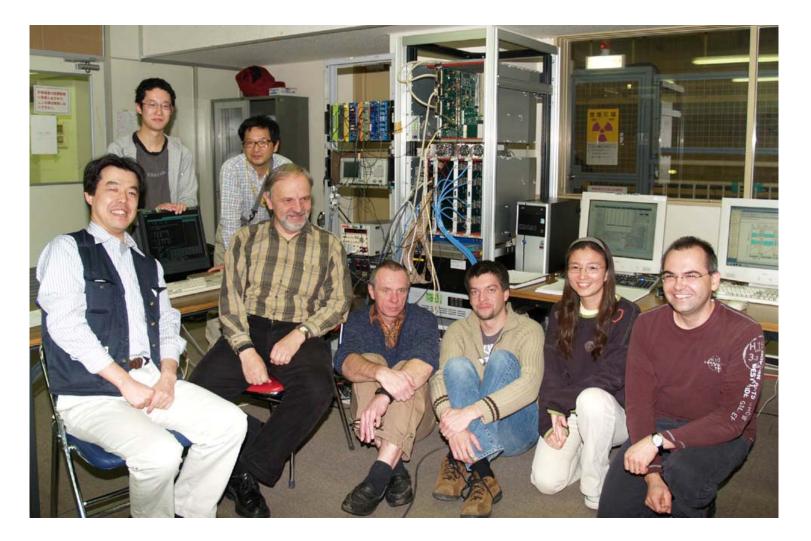
- Performed with real sparsified APV data (6 samples per event)
- Triggers from frequency generator (as beam rate is way too low)
- Noise occupancy adjustable by hit threshold of sparsification
- Copper CPU collects data and discards it (data are not stored)
- Test (1): Low occupancy (0.23%)
- 149 words / event at average (of which 96 words are overhead)
- No problem up to 50 kHz sustained trigger rate (APV25 limit) with Copper CPU collecting and discarding data

- Transfer to external PC and writing to disk is limited to 5 kHz

- 50 kHz triggers correspond to 7.4 MWords/s (32 bit wide)
- 20 M events collected without any error

FADC – Finesse/Copper Speed Test (2)

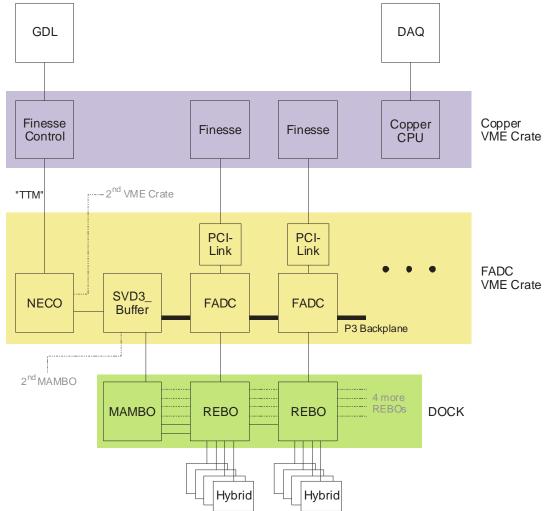
- Test (2): High occupancy (24.2%)
- 5670 words / event at average
- Works fine up to 6 kHz sustained trigger rate with Copper CPU collecting and discarding data
- Corresponding to 34 MWords/s (32 bit wide)
 - This is apparently the limit of the PCI bus (42.3 MHz frequency)
 - Deadlock observed in this (extreme) test above 6 kHz trigger rate (to be investigated)
- Prediction for "normal" occupancy (10%)
- Max. trigger rate ~14 kHz
- All the above is for sending 6 APV samples/event
- Hit time finding reduces data by factor of (almost) $6 \rightarrow OK$ for 10% occ.
- Implementation of hit finding in FPGA is underway \rightarrow see talk by M.P.


Summary

- Beam test successfully performed at Fuji beamline
- Doubled IPRE of APV25:
 - ~40% higher power disipation
 - SNR depends on temperature \rightarrow needs test with cooling
- Operating APV25 at 31.2 MHz \rightarrow ok
- Test of DAQ chain (FADC + Finesse/Copper)
 - works well
 - some issues concerning data and dataflow cotrol \rightarrow mostly solved
- Speed tests:
 - Low occupancy: 50 kHz triggers w/o problems
 - High occ.: no problems up to 6 kHz trigger rate, limited by PCI bus
 - Prediction for 10% occ.: ~14 kHz possible (w/o hit time finding)
 - Higher rates (up to 50 kHz) accessible with hit time finding

Beam Test Participants

Institute of High Energy Physics



BACKUP SLIDES

Super Belle SVD DAQ Scheme

- Designed for SVD3 Ugrade
- 384 APVs
 - 4 DOCKs
 - 4 Kenwood PSs
 - 24 FADCs
 - 2 FADC crates +1 Copper crate
- Prototypes of FADC system exist and were already tested in several beam tests
- Whole DAQ chain (FADC & Finesse & Copper) was tested in current beam test at Fuji beam line.
- However: SVD4 will be ~10 times bigger

Results – Signal and SNR

KEK Fuji Nov. 2008: doubled IPRE, after warming

	Micron		JP single		UV		Flex	
	p-side	n-side	p-side	n-side	p-side	n-side	p-side	n-side
Average cluster width	1.75	1.15	2.34	1.85	2.37	1.93	2.33	1.88
Cluster SNR	12.8	15.1	13.2	14.8	21.6	22.7	13.11	18.1
Time resolution [ns]	3.72	2.86	3.30	2.60	2.31	1.37	3.59	1.96

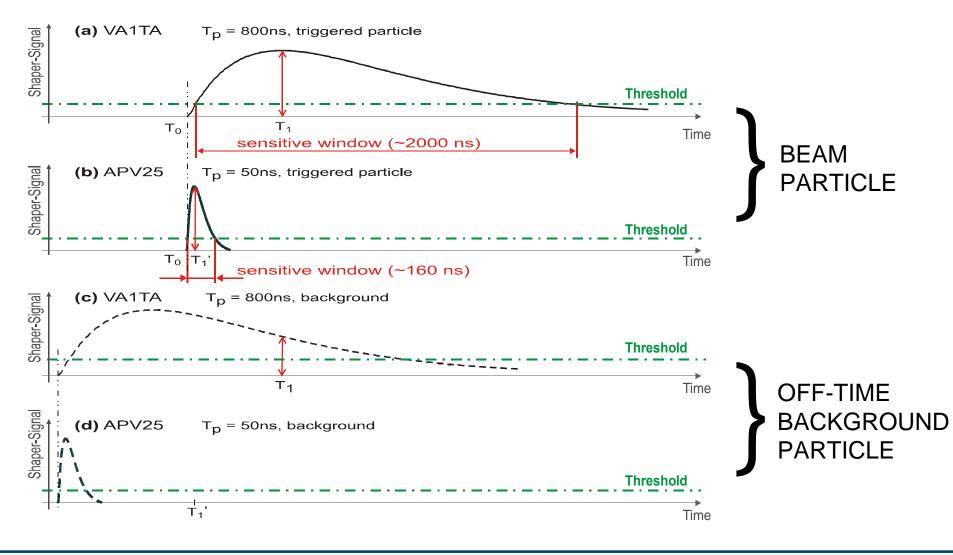
KEK Fuji Nov. 2008: clock = 31.8 MHz

	Micron		JP single		UV		Flex	
	p-side	n-side	p-side	n-side	p-side	n-side	p-side	n-side
Average cluster width	1.75	1.13	2.24	1.81	2.21	1.86	2.29	1.84
Cluster SNR	12.9	14.9	13.1	14.8	20.8	22.4	13.2	16.4
Time resolution [ns]	4.10	3.27	3.84	2.97	2.89	1.73	3.98	2.23

Comparison VA1TA – APV25

VA1TA (Belle SVD2)

- Commercial product (IDEAS)
- Tp = 800ns (300 ns 1000 ns)
- no pipeline
- <10 MHz readout</p>
- 20 Mrad radiation tolerance
- noise: ENC = 180 e + 7.5 e/pF
- time over threshold: ~2000 ns
- single sample per trigger


APV25 (SuperBelle)

- Developed for CMS by IC London and RAL
- Tp = 50 ns (30 ns 200 ns)
- 192 cells analog pipeline
- 40 MHz readout
- >100 Mrad radiation tolerance
- noise: ENC = 250 e + 36 e/pF
- time over threshold: ~160 ns
- multiple samples per trigger possible (Multi-Peak-Mode)

Shaping Time and Occupancy

Institute of High Energy Physics

