to find time and position of a hit

M.Pernicka Vienna

I would like to raise several issues:
Why we want use more than one pulse height sample of the shaped signal. The APV25 offers this possibility.
-What is the production status of the FADC+proc. System.
-The analogue part till the ADC.
-The 2 links between FADC und Copper system.
-The different data formats of the data block and what is planned for the hit time data block.
-The plans for the hit-time processor.
-Different error / control/syestenvisina

The point of storing a signal has a certain jitter.
The Trigger is synchronised with the clock for the
APV25 (for a LHC experiment no problem)
The trigger itself has a time jitter
Therefore 3 samples around the maximum would be a great advantage (or necessary) The APV25 has this facility.

M. Pernicka Vienna

The trigger can have a jitter more than the shaping time and the occupancy is still too big.

To increase the shaping time would be the wrong solution! Therefore we will measure the time of each signal to the trigger and each other! We use the 3 highest samples to calculate the time. An RMS of 2 ns was obtained (with high S / N) in various beam tests.

We have to live with jitter and latency of the trigger, we have to optimise the shaping time and clock frequency (and number samples) 6 samples are foreseen ... max +l-50 ns trigger jitter can be handled.

With 3 time samples the time range 25 ns . In reality, the time range must be bigger than 25 ns . The reason is the jitter of the trigger, noise of the signal and There fore we need 6 time samples (1,3,6,(9))
From 6 time samples we select those 3 neighbours where the middle one is a maximum or equal to a neighbour. Result coarse time 0,25,50,75. Lookup table only for a range of 25 ns . The first 25 ns starts with T1<T2 and ends with T2=T3 (T3>T5). The next 25 ns begins with (T1<T2) T2<T3 and ends with (t2<T3) T3=T4 (T4>T5) ...(T3<T4), T4<T5, T5>T6 there fore max time range 100ns!

With 6 time sample we can calculate the time in a range of 4 clock width

To select hits which belong to the trigger

Case:

Problem: cluster with 2 tracks with different times or not?

The amount of data would be for every input $\mathrm{n} * 140$ data ($n=1,3,6, .$.)
The answer was an FADC + processor module with 16 inputs and with a data processor for every input for position and time calculation. Every processing is a part of a pipeline. The limit of the trigger rate depends on the final design and could be as high as the trigger rate for the APV25.
The "mother" of this module is the readout module for the CMS pixel detector with 36 optical inputs.
2 other versions are used for the CMS beam conditions monitor system.

2 BELLE_FADC+proc. module are ready

Main aims:
You need output data of the ADC (transparent mode), to calculate ADC clock delay to the main clock, pedestal and threshold. An external gate signal is used as write signal of the ADC data in the memory and create on the control module a trigger and cal signal to the APVs Done by the VME system crate processor.

To get the hit information after reorder and 2-pass common mode correction.
To build for every hit 6 time samples. That means 6 times more data for one hit. The hit-time calculator reduces it to one. (Not included yet.)
(To include neighbours in space above pedestal and under threshold. Again more data.)

To get for every hit data the time. We will use the 3 time information from 6 time samples around the max. to find the time of the hit. (Neighbours in space can be included). In an unclear situation like 2 max are found, no max is found because max outside of the 6 time samples or shaping curve do not fit in the expected one, the full information, that means 6 time blocks are transmitted for further processing.
That would increase the data amount but without any loss of information.
A lot of test facilities for testing the different data processors are fore seen.

Test pulse generator, 3 channel DAC, can create hit data

The use of bit 31-0 for the different data types

* With or with
out neighbours

The use of bit 31-0 for the different data types

Main header always	Main header always, for one module information	Input header yes/no	Every input has its header, can be switched off by VME	
31 type header $=0$ 30-27 trigger type/4 25-23 type of data	Module input header ? ?	31typ of header =1 29-23 event number from input.	Input header Input number counting the arriving header APV25	
20-16 time of clock/ trig include later Alt-C	Time between trigger and clock busdata	$\begin{aligned} & 0 \\ & 19-16 \\ & \text { input }=4 \end{aligned}$	Code N U 16 inputs on module exists	
14,15 crate ? 13-9 module n Alt-C	Has to be included by VME	15-9 Ped Correction-2 7	Correction for the second common mode correction, can be + or -	
7-0 Event number, from Copper syst.	Bus- signal from controller	8-0 Ped Correction-1	Correction factor for the first common mode correction, can be + or -	
	M. Pernicka Vienna			11

Transpa rent data need strobe	Need a trigger signal from the controller (Neco) and a strobe signal (bus) to collect APV25 data. Will be used by VME system	Hit date	From a single hit position and time block information
31-23 Transpar. Data after reorder need a window sig	Transparent data from input n after reorder. Input number+1	$31-23=0$ transpar ent data belong to the hit	Transparent data which belong to the hit, still not included
$\begin{gathered} 7 \\ 19-16 \end{gathered}$	Code NU Input	22-20 time block 1bis6 19-16 input $=4$	Number of the time block, at the moment 6
		$15-9$ position 7	An APV25 has 128 signal outputs
$8-0$ Transparent data	Transparent data from input one	8-0 Pulse height data	Each signal above a threshold in oOne of the 6 time blocks

Main Trailer always	The end of a data block of the 16 oinputs
16-31	
CRC	CRC16 (Cyclic Redundancy Check)
check sum	
may be module error bits?	The kind and use of errors "are still open

The use of the bit 68-64 bits on FADC board bus system and for the data link to FINESSE

		Main header always	Input header Yes/no	Data	Dummy	Input Trailer	Main trailer	Control bits for finesse
								On connector
Head	67	1	1	0	1	0	0	HEADER 37/85
Trailer	66	0	0	0	1	1	1	TRAILER 39/87
Stop	65	0		stop-bit	0	0	0	HALF_EV 38/86
Da En	64	1	$1 / 0$	1	$0 / 1$	0		DA_EN 36/84

All TW control lines are also bus lines later. At the begin a connector with 50 pins is used for the distribution of the control signals, now we use the P3 bus. .

The 3 steps of FIFO's for normal 6 time one hit information read out

 time calculation for 16 inputs at 20 \% occupancy

The 3 steps of FIFO's for hit with time information read out

The 3 steps of FIFO's for hit with time information read out

Type of events

- A, A single hit, time calculated by " Look up table " or ...
-B, Max high of shaped pulse at the boundary above a certain value, will be used when necessary, time window 150 ns, but without time information or may be value 0 and 150 ns and marker bit.
-C, 2 max. time information's are found, between a smaller sample, the time has to be found outside, may be together with CSC det. data. Marker bit included.
-D Only one max. time info but the pulse shape do not fit in the expected shaping curve. Detected I in the Look up table". Final calculation out side.
-E 2 real max - 2 times - but can only handled outside
-F, small pulses, inside, hit pulse high information but time critical, marked

Look up table decide outside

\uparrow
Address bits 2^0 -- 2^8

A possibility to realise hit time processing for 4 inputs $=4$ APV25 (one detector)

One of several possibilities to measure the time under evaluation (The pedestal value of the signal should be

 for the Look Up Tables alwas the same)Selects the 3 highes neiboughs

The first 2 time inf.<9bitg the 3. <8 bit

Coarse time $0,25,50,75 n s 2 B i t$

Control system for the hit data decision logic.

Counter for these cases
hits which where processed by the look up table hits which do not fit in the shaping curve where more than one maximum was found where max of amplitude on the boarder
The ratio between counters should be more or less constant. Could be done for every APV25

Data control system:

1. Compare channel event number with that from system. Done on board. Channel event number counted from the number of APV25 headers.
2. Look for missing APV25 signal inputs
3. First and second correction value for the common mode. The sum of pos. and neg. values should be roughly equal.
4. It should be possible to build a histogram from the calculated time of the different inputs-APV25. There should be maximum, where our trigger is expected.
5. The ratio of found hit time and unprocessed data.

Summary

- A, 2 modules exist and are tested as far as possible, Reorder, Hit calculation, data format, ... are tested and work.
- B, The firmware is still without time calculation.
- C, The APVDAQ 9U VME for the control signals exist
- D, A test with the FADC+proc. APVDAQ 9U control module and Copper system was done at Vienna and now at KEK.

