
Tom Fifield
fifieldt@unimelb.edu.au

Production MC events on the
Amazon EC2 Cloud

2

Previous Work

• Have Belle MC Analysis working on EC2
• “cloud computing ... will provide extra

resources on top of the baseline (grid)
resources in case we are in urgent need
of CPU power.”

• Automating it was the next step.
• Followed by a production MC run

3

Goals

• Automate the use of Amazon Elastic
Compute Cloud to do Belle MC Analysis

• Provide a queuing system, where users
can submit Belle MC Analysis jobs to be
run on the cloud

• Allow greatly simplified security
configuration for access to postgres
database from the cloud

4

Architecture

SQS

S3

EC2

CloudMC
CloudMC
CloudMC
CloudMC
CloudMC
CloudMC

Pool Manager

Ingestor

XML

script

Retrieval

XML

XML

scripts filesUser submits 2 basf scripts,
one for generation, one for

simulation

User retrieves determines which
files to retrieve and uses script

to download them from S3

Monitor queues and starts and
stops instances as necessary

Users

5

Client

• One-line submit:
– ./cloud_sub generation.scr simulation.scr
[project] [batch#] [#jobs]

– Combines the scripts with a template header
to make cloud-runnable code

• Simple retrieve
– ./retrieve p project [file1 file2...]

• Can be made prettier

6

Pool Manager

• Constantly monitors the queue
• Starts and stops AMIs as necessary
• Deals with non-responsive AMIs
• Tracks job status

7

On-Cloud

• Upon starting, AMI:
– downloads the latest version of our

automation & analysis software
– Initiates a Java service, which retrieves the

next waiting job in the queue
– Runs the user-provided code and uploads

results to S3

• Uses SSH tunnel to contact postgres
server securely – no firewall changes
needed

8

Timings

• Takes about 6 minutes to start an AMI
– (probably the enormous 7Mb download from

Australia!)
– Generally looks like this:

– You can configure a great deal:
• eg how many servers you start when a new job

comes in
• how long to leave them idle

9

Screenshots

• Ingesting

• Pool Manager starts a new instance

10

Screenshots

• 10 jobs in the queue, 9 Instances start

• 10 jobs in the queue, 10 instances run

• Jobs finish, idle timeout expires, shut down

11

Retrieval

• Using the project name from ingest, list &
retrieve files produced

12

Screenshots

• Replacing an unresponsive instance

13

Cost

• Amazon Simple Queue Service is cheap.
– $0.01 per 10,000 Amazon SQS Requests

($0.000001 per Request)
– If you run server polling queue at 5sec

interval, that's $6.30/year
– Standard AMI charges

Machine cost/104
 events cost/109

 events
Small EC2 Instance $2.065 $206,541.575

Large EC2 Instance $1.175 $117,504.489

Extra Large EC2 Instance $1.176 $117,637.111

HighCPU Med EC2 Instance $1.029 $102,913.583

HighCPU XL EC2 Instance $0.475 $47,548.933

14

Remember... It's our own code

• We can modify any way the service acts
– e.g. Upload to SRB instead of S3
– Web-page job status query
– Hook-in to other automated submission

systems

15

Addbg

• We need to use addbg
– Store the addbg data on S3
– Can then use S3FS (fuse module for S3) to

retrieve it as if it were local
– Cost – depends on how much you need to

store
• Exp 61, Run-Range 3 was 3.1Gb
• @ $0.150 per GB per month: $0.465/month
• @ $0.100 per GB transfer cost inbound: $0.31

16

The million event run

• Exp 61 Charged RunRange 3 Stream 1
has 1000764 events

• Run 20 HighCPU-XL instances (8 cores,
17Gb RAM)

• Retrieve addbg data from S3
• Store results in S3 before transfer to

KEK
• A way to look at real cost of cloud

17

Running...

18

Costs

• Sorry, we only managed to do 752,233
events in time for the presentation

• CPU cost: $80
– 20 Instances, 4 hours 57minutes

• Storage cost: $0.20
– Storage on S3: Addbg 3.1Gb, pgen 0.5Gb,

results 37Gb, $6.08/month or $0.20/day

• Transfer cost: $6.65
– Addbg, pgen in: $0.36, mdst out: $6.29

• Total Cost: $86.85

19

Lessons Learnt

• BASF doesn't like S3FS
– Needed to copy addbg data to a 'local' disk

before running job (only done once per
server, not per job)

• Takes ~30minutes to get full 20 servers
running production due to
downloads/copying
– This is about 10% wasted time
– Can be minimized if running 24x7 (we were

looking to save money!)

• Postgres still has a large overhead

20

• Run postgres server on the cloud?
– ~$876.60/year

21 © Copyright The University of Melbourne 2009

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

