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Previous Work

• Have Belle MC Analysis working on EC2
• “cloud computing ... will provide extra 

resources on top of the baseline (grid) 
resources in case we are in urgent need 
of CPU power.”

• Automating it was the next step.
• Followed by a production MC run



3

Goals

• Automate the use of Amazon Elastic 
Compute Cloud to do Belle MC Analysis

• Provide a queuing system, where users 
can submit Belle MC Analysis jobs to be 
run on the cloud

• Allow greatly simplified security 
configuration for access to postgres 
database from the cloud
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Architecture
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Client

• One-line submit:
– ./cloud_sub generation.scr simulation.scr 
[project] [batch#] [#jobs]

– Combines the scripts with a template header 
to make cloud-runnable code

• Simple retrieve
– ./retrieve p project [file1 file2...]

• Can be made prettier
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Pool Manager

• Constantly monitors the queue
• Starts and stops AMIs as necessary
• Deals with non-responsive AMIs
• Tracks job status
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On-Cloud

• Upon starting, AMI:
–  downloads the latest version of our 

automation & analysis software
– Initiates a Java service, which retrieves the 

next waiting job in the queue
– Runs the user-provided code and uploads 

results to S3

• Uses SSH tunnel to contact postgres 
server securely – no firewall changes 
needed
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Timings

• Takes about 6 minutes to start an AMI
– (probably the enormous 7Mb download from 

Australia!)
– Generally looks like this:

– You can configure a great deal: 
• eg how many servers you start when a new job 

comes in
•  how long to leave them idle
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Screenshots

• Ingesting

• Pool Manager starts a new instance
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Screenshots

• 10 jobs in the queue, 9 Instances start

• 10 jobs in the queue, 10 instances run

• Jobs finish, idle timeout expires, shut down



11

Retrieval

• Using the project name from ingest, list & 
retrieve files produced
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Screenshots

• Replacing an unresponsive instance
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Cost

• Amazon Simple Queue Service is cheap.
– $0.01 per 10,000 Amazon SQS Requests 

($0.000001 per Request)
– If you run server polling queue at 5sec 

interval, that's $6.30/year 
– Standard AMI charges

Machine cost/104
 events cost/109

 events
Small EC2 Instance $2.065 $206,541.575

Large EC2 Instance $1.175 $117,504.489

Extra Large EC2 Instance $1.176 $117,637.111

HighCPU Med EC2 Instance $1.029 $102,913.583

HighCPU XL EC2 Instance $0.475 $47,548.933
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Remember... It's our own code

• We can modify any way the service acts
– e.g. Upload to SRB instead of S3
– Web-page job status query
– Hook-in to other automated submission 

systems
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Addbg

• We need to use addbg
– Store the addbg data on S3
– Can then use S3FS (fuse module for S3) to 

retrieve it as if it were local
– Cost – depends on how much you need to 

store
• Exp 61, Run-Range 3 was 3.1Gb
• @ $0.150 per GB per month: $0.465/month
• @ $0.100 per GB transfer cost inbound: $0.31
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The million event run

• Exp 61 Charged RunRange 3 Stream 1 
has 1000764 events

• Run 20 HighCPU-XL instances (8 cores, 
17Gb RAM)

• Retrieve addbg data from S3
• Store results in S3 before transfer to 

KEK
• A way to look at real cost of cloud
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Running...
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Costs

• Sorry, we only managed to do 752,233 
events in time for the presentation

• CPU cost: $80
– 20 Instances, 4 hours 57minutes

• Storage cost: $0.20
– Storage on S3: Addbg 3.1Gb, pgen 0.5Gb, 

results 37Gb, $6.08/month or $0.20/day

• Transfer cost: $6.65
– Addbg, pgen in: $0.36, mdst out: $6.29

• Total Cost: $86.85
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Lessons Learnt

• BASF doesn't like S3FS
– Needed to copy addbg data to a 'local' disk 

before running job (only done once per 
server, not per job) 

• Takes ~30minutes to get full 20 servers 
running production due to 
downloads/copying
– This is about 10% wasted time
– Can be minimized if running 24x7 (we were 

looking to save money!)

• Postgres still has a large overhead
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• Run postgres server on the cloud?
– ~$876.60/year
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