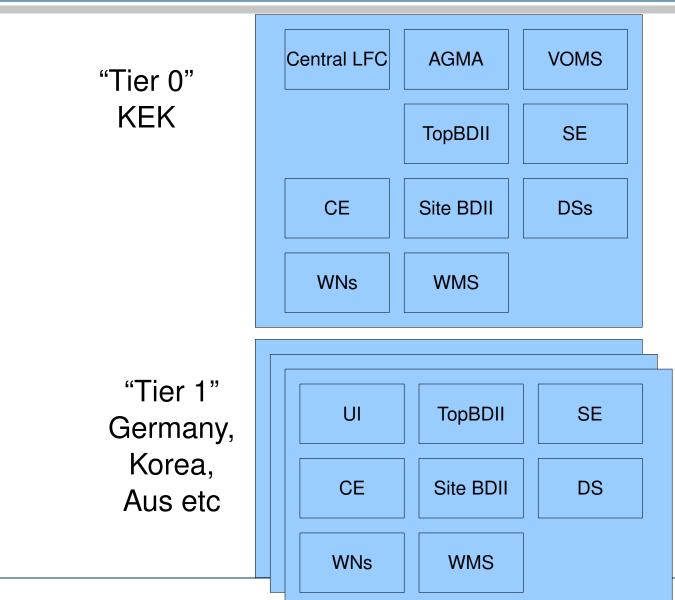


Tom Fifield fifieldt@unimelb.edu.au

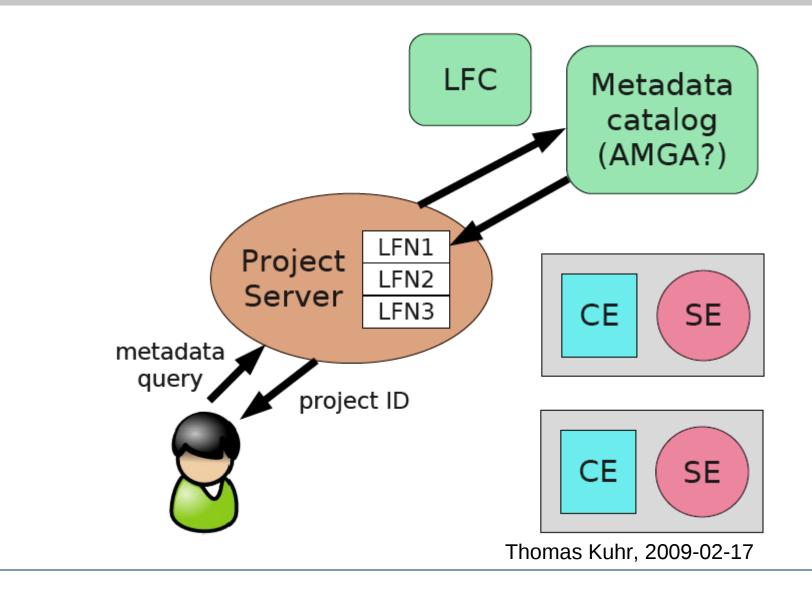

Prototyping a Distributed Computing Environment for SuperBelle

- We need a distributed computing solution for SuperBelle
- Thomas Kuhr presented Data Handling
 at CDF
- Soonwook Hwang presented AMGA
 Metadata Catalogue
- Idea: Start work on a gLite-based solution encompassing these ideas immediately

The architecture

3

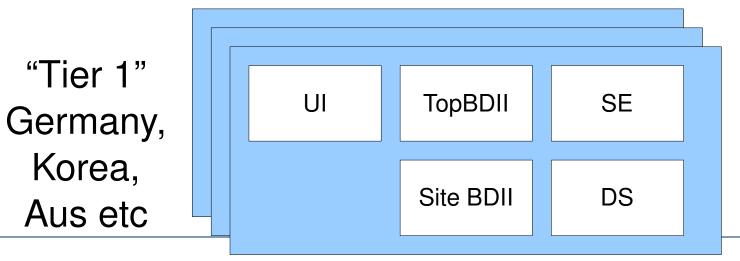
That looks really complicated Let's divide into two stages


- Stage 1: Focus on storage
- Stage 2: Complete computing tasks

- These will be explained in detail later:
 - CE = Compute Element, coordinates access to computing resources
 - SE = Storage Element, coordinates access to storage resources
 - LFC = LCG File Catalogue, keeps track of file locations on the grid
 - AMGA = ARDA Metadata Grid Application, keeps track of data about files

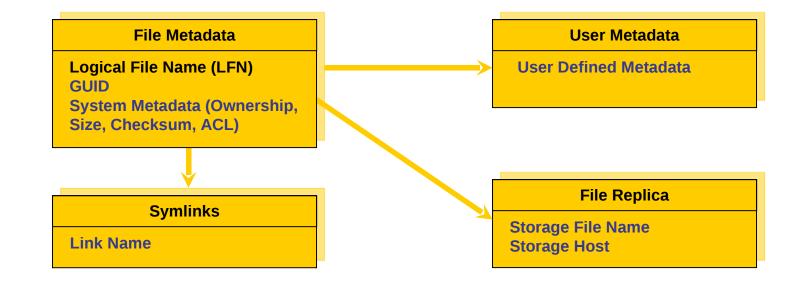
End of Stage 1

- Get to the point where a user is returned a project ID
 - For now, we ignore submission to Compute Element and running the job
 - This abstraction makes it simpler, and easier to prototype storage ideas

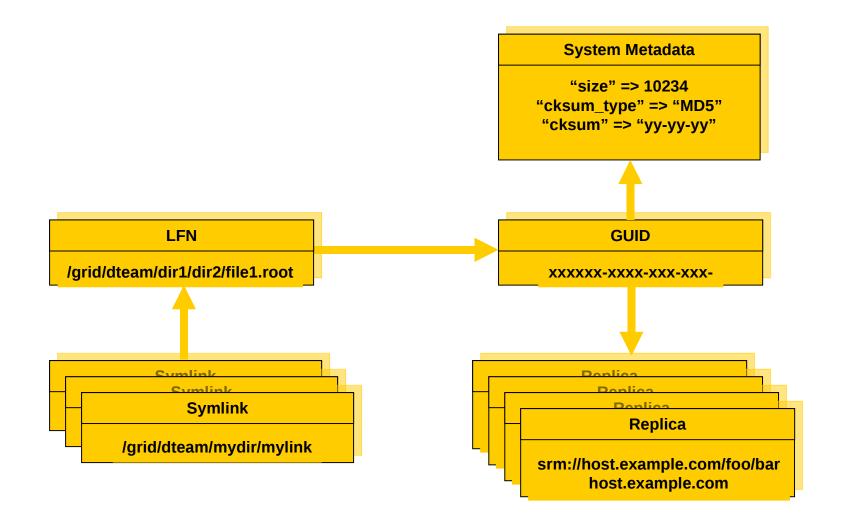

- Tiered architecture
 - KEK has much of storage/processing, but this allows other sites to give access to their users locally
- Possible to <u>simulate</u> in ~12 gLite services across 2 virtual sites (12 CPUs, 12GB Ram, 200Gb disk) [production needs a lot more!]

– Use virtual machines = low to zero cost

gLite Components – Stage 1

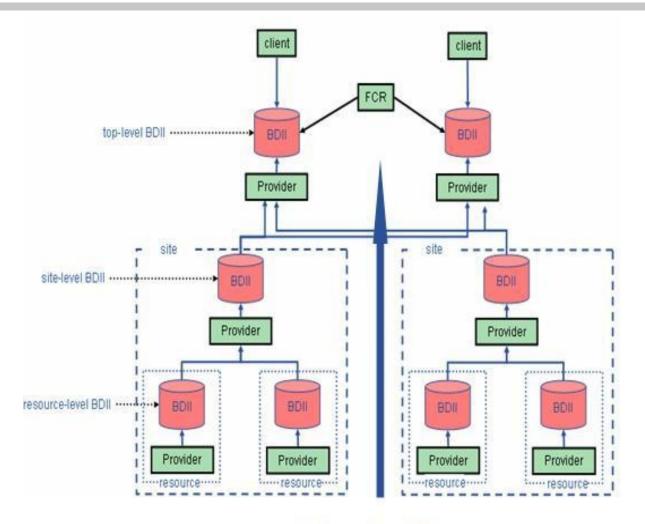


- LCG File Catalogue
 - Designed for performance and scalability
 - Oracle or MySQL backend
 - Maps between a logical file name and its physical location(s)



- LCG File Catalogue
 - Data in Datasets
 - Datasets comprised of files
 - Can have multiple copies either partial or complete datasets – stored anywhere in the grid

Example


- ARGA Metadata Grid Application
 - Metadata catalogue
 - A structured way of storing information
 - A powerful query interface

- BDII = Berkeley Database Information Index
- GLUE Schema common data model for Grid resources
 - List of services at a site
 - Available storage
 - Number of cpus free/in use
 - Queue information
- Resource level \rightarrow Site level \rightarrow Top level

Information System

Information Flow

Example

siteName:	Australia-ATLAS						
Web:	http://epp.ph.uni	http://epp.ph.unimelb.edu.au/					
Location:	Melbourne, Austra	Melbourne, Australia					
Latitude:	-37.48141						
Longitude:	144.57351						
agh2.atlas.uni	melb.edu.au:2119/jobman	ager-lcgpbs-belle					
GlueCEState	Status:	Production					
GlueCEPolic	yMaxRunningJobs:	Θ					
GlueCEPolic	yMaxWallClockTime:	4320					
SubClusters:							
agh2.atlas.uni	melb.edu.au						
GlueHostOpe	ratingSystemName:	ScientificSL					
GlueHostOperatingSystemRelease:		4.6					
GlueHostOperatingSystemVersion:		Beryllium					
GlueSubClusterPhysicalCPUs:		80					
GlueSubClusterLogicalCPUs: 88							
GlueSEUniqueID	: agh3.atlas.unimel	.b.edu.au					
17 GlueSEName:	Australia-ATLAS:s	rm_v1					

- Machine has
 - user accounts
 - installed tools for working with grid
 - access to submit jobs to grid

- SE = Storage Element
 - Provides uniform access to storage
 - Abstraction allows for different hardware (Disk Servers) to run behind different SEs: tape, arrays, disk
 - $\text{ PFN/SURL } \rightarrow \text{ SE } \rightarrow \text{ TURL}$

Storage

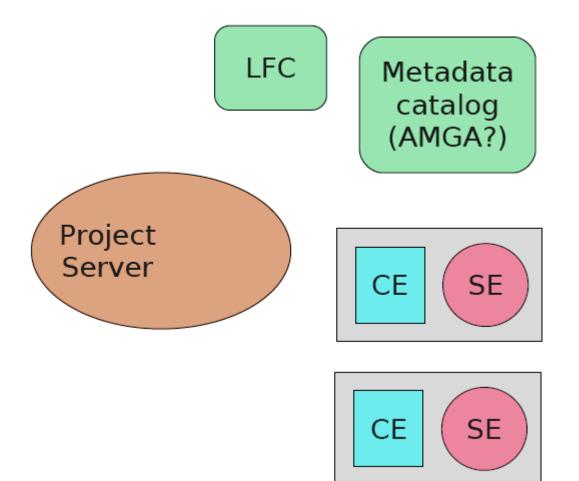
- Virtual Organisation Management (VOMS)
- Storage Element (SE)
 - dpm
 - dCache
 - Castor
- Information System (BDII)
 - LCG File Catalog (LFC)
 - User Interface (UI)

- We have much of the build and configuration process automated and ready to go, using cfengine
- What is cfengine?

- "Cfengine is an automated suite of programs for configuring and maintaining Unix-like computers"
- We've turned what a grid node needs into a cfengine configuration.
 - Packages
 - Security: Firewall, user accounts, permissions etc
 - Configuration of services

- Example: We need a new worker node 1)Rack the hardware
 2)Assign an IP address to the hardware
 3)Tell cfengine that this machine is a worker node
 - 4)Turn the machine on
- We have this working for CE, WN, SE, DS, BDII, Mon, UI
 - No LFC, AGMA or VOMS

- LCG tools alone don't deal with these:
- Data registration
 - What happens to data from the detector?
- Data distribution
 - What should be where, and how does it get there?
- User tools


– How do users want to use the data?

- Data registration

 Integration with AGMA (as by Hwang), LFC
- Data distribution
 - Proposal by Thomas Kuhr
- User tools
 - Write them.

Recall

 Install all grid services in virtual servers, using existing cfengine scripts for configuration as much as possible
 Work on simulation:

 Registration of datasets and metadata
 Site administrator data management tools

3)User query

- Very minimum specs needs 12 cores:
 Central LFC
 - -VOMS
 - AGMA
 - UI
 - $-2 \times SE$
 - 2 × Disk Server
 - 2 × Top BDII
 - 2 × Site BDII

- SL4 with gLite can be done in 15GB disk
- Many services will run within 1GB of RAM
 SE is an exception

24421 dpm	mgr 16	0	0	39:03.57	25.5	1310m	1.0g	3952	S	dpnsdaemon
24312 dpm	mgr 16	0	0	39:46.75	6.9	779m	272m	4056	S	dpm
4394 mys	ql 16	0	Θ	484:53.40	0.7	174m	27m	3784	S	mysqld
6677 roo	t 16	0	0	6:42.70	0.4	224m	14m	2832	S	dsm_om_connsvc3
24464 dpm	mgr 16	0	8	128:14.61	0.3	280m	13m	3972	S	srmv1
24552 dpm	mgr 16	0	0	322:38.70	0.3	280m	12m	4280	S	srmv2.2

- This is going to be slow
- More concerned with software feasibility
 - The gLite components have already proven their performance

• For example, 2 × 8-core machines with 16Gb of RAM each would be safe

– eg Dell PowerEdge 1950

- We need to:
 - Emulate the creation of datasets, including:
 - Copying physical files to disk servers via SE
 - Registering physical files as datasets in LFC
 - Registering metadata in AGMA
 - Allow the distribution datasets, by creating tools for site administrators that:
 - Facilitate the transfer of files from other SEs
 - Register the new replicated physical files in the LFC

- We need to:
 - Work on the Project Server to ensure
 - It can communicate with LFC and AGMA to determine dataset locations based on metadata
 - This is the link we need to provide core of the project

- If the system works end-to-end, we've done our job:
 - 1)A dataset is created and registered in LFC and AGMA at "Tier 0"
 - 2)The dataset is copied to the "Tier 1" site
 - 3)A user puts in a metadata request and receives back the project ID and locations ("Tier 0", "Tier 1") hosting the dataset
- This will prove the first part of the model suggested by Kuhr, and leave us with software to move to completion

Progress

- Working on defining requirements
- Use cases from Katayama san
- Data Handling
 - The system must allow individual users access to raw data (Use Case #4)
 - The system must support returning histograms and other information (Use Case #4, Use Case #9)
 - The system must facilitate the access of another users data, within permission restrictions (Use Case #7)
 - The system must interface with the QAM System (Use Case #13)
- Job Handling
 - The system must support masses of parallel Jobs to a fine grain (Use Case #3)
 - The system must support different run lengths for jobs (Use Case #3)
 - The system must minimize idle CPU time between jobs (Use Case #3)
 - The system should support the ability to re-run with certain modules only (Use Case #3)
 - The system must allow for priority to be given to certain short-running jobs (Use Case #4)
 - The system must allow for automatic determination of CPU and Storage resources to use, where the user does not specify them (Use Case #4)
 - The system must allow similar jobs to be run with minimal changes (i.e. parameterised jobs) (Use Case #5)
 - The system must provide an appropriate level of debugging information (Use Case #5)
 - The system must provide an interface that allows users to manage their jobs (Use Case #7)
 - The system must allow computation to be run on a selected number of events (Use Case #7)
 - The system must run on an entire data set with the shortest elapsed time possible (Use Case #7)
 - The system must allow the use of geant4 (Use Case #8)

- Determine format of user metadata query
- Determine heirachy schema for storage
- Site manager tools to assist with Data Distribution - what do we need above lcg-rep?
- What can we use from SAM?

© Copyright The University of Melbourne 2008