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Requirements:
  - Katayama-san (and I) are now trying to collect requirements
    to the framework starting from the use-case study.
  - It is on the wiki:
        http://wiki.kek.jp/display/sbelle/Use+cases



  

1. Requirements to SB Framework

a)  Modular structure = Software Bus
   * Dynamic-linkable user-supplied analysis modules
   * Flexible execution control of modules

b)  Object I/O
   * Capability to read/write C++ object.
   * Independent of specific data models

c)  Interface to distributed computing
   * Parallel processing
   * Data file access over WAN (i.e. GRID)

d)  Input/Output file management
   * Database interface

e)  Integrated histogram/N-tuple management

f)  Programmable script parser for the control

g)  Dynamic configuration of framework components

h)  Target Use: DAQ(readout/HLT), data production, 
                      MC production, user analysis
  * Unified framework for all cases is desired.

i)  Backward compatibility
  * Compatibility with Belle software/data



  

a) Modular structure

- Modules are coded by inheriting a common “module” class

- The class should consist of at least
    * initialization
    * event processing
    * termination
  functions. 
    + More functions might be necessary for the management of histograms, 
         statistics display, begin_run/end_run processing,  etc.

- Coded primarily in C++. We should forget legacy languages.

- Built as a shared object and plugged into framework by dyn. link.

- Flexible execution of module chain driven by a script language

- Object passing among modules:
   * pass pointer to a common object
   * define input and output objects of each module
   * access through proxy



  

b) Object I/O 

- Event object in a file is stored in “serialized” format.
   <- convert “objects” to some format which can be stored in a file.

- Known object serialization(streaming) method:
  1. ROOT IO (used in GAUDI and roobasf)
  2. SIO   (SLAC product for ILC, used in Marlin)
  3. BOOST serialization (Advanced C++ standard)
  4. Panther C++ interface (used in BASF)

- Serializer code:
  * ROOT IO can automatically generate the code by running 
    “rootcint” with class header files.
  * Need to be provided by users for SIO and BOOST
  * Serializer is supported for “LCIO with SIO” and Panther, however,
    the object component type is restricted.
     - Marlin's LCIO is basically a collection of serializer codes assuming the LC data model.
       Addition of new object is possible, but the structure is restricted to array of .... 
     - Panther C++ interface works similarly by defining objects as Panther tables. 

“Object serialization (streaming)” is the main concern.



  

c) Interface to distributed computing

- For the massive data processing (HLT processing in DAQ, 
  data production, MC production and heavy user analyses),
  a distributed parallel processing is required.
     *  Belle's BASF and dBASF(RFARM) have a parallel procesing capability 
        for a single data stream and it is quite successful in the rapid data processing 
        (both DAQ and offline) with less load for the file management.

     * Method of parallel processing:
       a) multiple I/O streams processed by a collection of single framework nodes  
          -> parallel processing scheme outside framework is required.
               ... not suited for HLT
            => GAUDI, Marlin
      b) single I/O stream with the parallel processing integrated in the
          framework
            => BASF, dBASF, roobasf

-  Access to distributed file is also required.
      * GRID based remote file access : SRM, SRB.....
      * xrootd



  

d) Input/Output file management

- Management of names of the input/output files
  * logging to database whenever read/written.
  * retrieve unique file name in the distributed space by a  
    generic specification of data stream.

- Distributed database combined with Object I/O is required.

- Candidates:
  * POOL (as used with GAUDI)
    = combination of MySQL (or other DB) + ROOT IO
  * xrootd

- More consideration is needed......
     



  

e) Integrated histogram/N-tuple management

- Histograms/N-tuples are defined/accumulated by modules 
  independently and a mechanism to organize them is required
  in the framework.

- ROOT based histogram management is the default.

- Have to manage the histogram collection from multiple
  nodes in case of parallel processing.

- Real-time histogram collection mechanism for the online 
  monitoring is necessary when used in HLT farm.



  

f) Script parser for the control 

- Need a good script parser to describe the data processing
  on the framework.

- It is desired to use widely-used scripting language
  as the parser:
   * Custom (BASF, GAUDI, roobasf-prototype) – not desired
   * Tcl/Tk (BaBar/CDF framework)
   * Perl
   * Python (roobasf in future)
   * XML (Marlin)

- Could be a  “programming language” to describe the data 
  processing sequence, i.e. loop, conditional jump, etc in
  module execution, providing transparent interface to C++
  in which the framework codes is written.
  



  

2. Possible candidates for SuperBelle framework

a) BASF/dBASF

- Currently used in Belle experiment

Software bus   : Yes
Object I/O        : Panther C++ interface
Dist. comp.      : Integrated parallel processing (SMP/network cluster)
File mngmnt    : No (ad-hoc GRID interface exists)
Histogram        : HBOOK4 + Wrapper (BelleHistogram/Tuple)
                          Real time collection mechanism implemented.
Script Parser   : Custom, user interface is replaceable by dyn. link

Problem when used as SB framework:
  * Limitation in the object data structure for Object I/O.
  * ROOT (data stream/histograms/N-tuples) is not supported.
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Panther and Object I/O
TDF file -> “bbstable” command -> Converted to a class header file

Define_Table Gen_PakVTX 200 "Packed Gen_HEPEVT (vertex part)"
  Real*4  VX      "VX (no change)"
  Real*4  VY      "VY (no change)"
  Real*4  VZ      "VZ (no change)"
  Real*4  T       "T  (no change)"
End_of_Define_Table Gen_PakVTX

class Gen_pakvtx {

  public:
     Gen_pakvtx():m_p(0){}
     Gen_pakvtx(const Gen_pakvtx&e):m_p(e.m_p){}
  private:
  friend class Table_Manager<Gen_pakvtx>;
     Gen_pakvtx(const Panther_ID&, PNT_TableIndex*);
     void newent(void);
  public:
    ~Gen_pakvtx(){}

  public: // Extractors
    float VX(void) const;
    float VY(void) const;
    float VZ(void) const;
    float T(void) const;
    Panther_ID get_ID(void) const { return Panther_ID(m_p?m_p->m_ID:0); }

  public: // Modifiers
    float VX(float);
    float VY(float);
    float VZ(float);
    float T(float);

  ..........
};

TDF file

Header file

generated by “bbstable”



  

Panther Object I/O (cont)

- Panther I/O : Event by event I/O of a set of tables
         -> equivalent to serialized object I/O

- Schema evolution is (supposed to be) implemented. 
  (in principle, but is not working for now.)

- No dependency on any specific data models

- Entity-relation can be defined between tables=objects
   1-to-n, n-to-1 and n-to-n

- Limitation:
  * Data type in the object is restricted.
         Fortran data type + pointer to other table entity
  * Table must be defined for every objects in event
    in DDL(data definition language).
            => Not true OO data handling.



  

b) GAUDI

- Currently used in ATLAS and LHCb

Software bus   : Yes
Object I/O        : ROOT IO
Dist. comp.      : Outside framework is required = GRID batch
File mngmnt    : POOL (ROOT IO + GRID DB)
Histogram        : ROOT
                          No real time collection.
Script Parser   : Custom

Problem when used as SB framework:
  * Need to develop outside parallel processing framework
  * Too heavy.
  * No experts around here.....



  

GAUDI

- “module”(BASF) = “algorithm” (GAUDI) , more versatile management
- Algorithm and data are clearly separated 
- ROOT IO based object persistency (POOL)
- ROOT based histogram/N-tuple management

     * “Proxy” based access to event and other objects.



  

c) Marlin

- Currently used in ILD (German group)

Software bus   : Yes
Object I/O        : LCIO implemented using SIO
Dist. comp.      : Outside framework is required
File mngmnt    : No (thru. SIO)
Histogram        : No particular package/management assumed.
                          No real time collection.
Script Parser   : XML

Problem when used as SB framework:
  * Too much dependence on LC data model
  * Restriction to object handling by LCIO (just like BASF/Panther)
  * Need to develop outside parallel processing framework



  

Mokka and Marlin

- Event generator and simulator(Mokka/G4) are separated from 
  framework(Marlin) by some historical reason and difficult to
  be implemented as Marlin processors (by Frank).
 

- Data modeling and object I/O is strongly coupled in LCIO.
  since LCIO is a collection of serializer of LC objects for “SIO”.

- Actual I/O is based on “SIO” whose support was terminated....

- Another framework for ILD called JSF/Jupiter exists which is  
   based on ROOT and the merging with it is under discussion.

ASCII
file



  

LCIO data model : 
- Cross reference of objects can be handled:
     1-to-n, n-to-1, n-to-n    
- Supported data types in base objects are restricted to 
      (arrays of) char, int, float and double  
           <- limitation from Fortran I/F? Quite similar to Panther! 
* Adding new objects to LCIO data model
  - Basically very difficult
  - It is possible to add user object using “LCGenericObject”, 
    however,the data types are also restricted and
    the access has to be made using special functions. 

class LCGenericObject:
create                 -> pgob    = lcgobcreate()
create (dimensions)    -> pgob    = lcgobcreatefixed( nint, nfloat, 
ndouble )
delete                 -> status  = lcgobdelete( pgob )
setIntVal              -> status  = lcgobsetintval( pgob, i, ival )
setFloatVal            -> status  = lcgobsetfloatval( pgob, i, fval )
setDoubleVal           -> status  = lcgobsetdoubleval( pgob, i, 
dval )
id                     -> id      = lcgobid( pgob )
getNInt                -> nint    = lcgobgetnint( pgob )
getNFloat              -> nfloat  = lcgobgetnfloat( pgob )
getNDouble             -> ndouble = lcgobgetdoubleval( pgob )
getIntVal              -> ival    = lcgobgetintval( pgob , i )      
(i=1,...,nint)
getFloatVal            -> fval    = lcgobgetfloatval( pgob , i )    
(i=1,...,nfloat)
getDoubleVal           -> dval    = lcgobsetdoubleval( pgob , i )   
(i=1,...,ndouble)
isFixedSize            -> bool    = lcgobisfixedsize( pgob )
getTypeName            -> name    = lcgobgettypename( pgob )
getDataDescription     -> string  = lcgobgetdatadescription( pgob )



  

d) roobasf

- Under development for SuperKEKB and HSC based on BASF

Software bus   : Yes
Object I/O        : ROOT IO
Dist. comp.      : Built-in parallel processing for SMP and network clst.
File mngmnt    : planned (POOL / xrootd)
Histogram        : ROOT+Wrapper class
                          Real time collection will be implemented
Script Parser   : custom -> Python

- Still under development
      refer to status reports by Katayama-san and S.H.Lee at DUMs
- Prototype with parallel processing is being tested /used in HSC now.
- Histogram collection mechanism and Panther interface
  will be implemented in one or two months for the field test in Belle.
- Started the study of Python scripting 
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3. Future direction and plan

- Framework provides the basis for various software development
  at SuperKEKB
      -> Need to decide as early as possible

- Practically speaking, realistic candidates are two:
    1. “Marlin” offered by German group
    2. “roobasf” being jointly developed by Belle and HSC
        * GAUDI – no experts around here
        * BASF – taken over by roobasf

- Decision should be made by considering the actual requirements
  to the framework.

- We will focus on the discussion on the requirements and
   make the decision by autumn at the latest.



  

Personal pros and cons to candidates

a) Marlin
pros:
   - It is actually being used for the SuperKEKB detector simulation.
   - Basic required functions as a framework are already built-in.
   - Nice scripting system based on XML.

cons:
   - Too heavy dependence on LC data model. If we decide to use Marlin, that 
     means SuperKEKB data model has to be constructed based on LC data model. 
         -> big issue which affects on the whole SuperKEKB software design.
   - Marlin is basically the “old generation” framework to which 
     BASF belongs as well.
       * Object I/O (LCIO) is old style (just like Panther/BASF).
   - Worries on future support.
       * Support for SIO (SLAC product) is already terminated.
       * Development team is outside SuperKEKB.
       * LC data model is not combat proven. It is basically developed for MC study.
       * Not established even in ILD community. Merging with JSF is discussed.
   - No parallel processing support
      -> External parallel processing framework is necessary to be developed 
          for massive data production.



  

Predefined LC data model



  

b) roobasf

pros:
  - All basic functions are built in the prototype already
  - Smooth extrapolation from existing BASF/Belle software
  - Independent of the choice of data model
  - New generation framework with true object I/O support by ROOT IO,
    to which GAUDI belongs as well. 
  - Built-in parallel processing support
       -> unified framework for DAQ, production and user analyses 
          (as well as BASF).
  - Being developed/supported inside SuperKEKB collab.

cons:
  - Not yet used in SuperKEKB study although prototype is ready and 
    being used for HSC.
  - Scripting system of the prototype is poor. It will be replaced with 
    Python-based system.
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