Ideas of Forward Si Tracker for Super-KEKB

2009/3/18 M.Iwasaki and H.Aihara (Univ. of Tokyo) T.Tsuboyama, S.Uehara, T.Higuchi, and Y.Ushiroda (KEK)

Forward Si tracker

Forward Si tracker might be a good device to

- 1. Extend the tracker acceptance
 - → May improve the performance of B reconstruction, missing particle analysis, Two-photon analysis, …

2. Measure the IP beam size

→ May also use the Si tracker as an e⁺e⁻ pair monitor which is developed and considered to be used for ILC T.Tauchi and K.Yokoya, Phys. Rev. E 51 (1995) 6119

Beam size measurement with an e⁺e⁻ pair monitor

Method

e⁺e⁻ pairs produced at IP have the beam size information

- 1. Beam produces the magnetic field which depends on the beam structure
- 2. e⁺/e⁻ particles produced at IP are scattered by the beam magnetic field Same charge → Repulsive force
 - \rightarrow Scattered to the detector region
- 3. e⁺e⁻ pair monitor detects the scattered e⁺/e⁻ particles

e⁺e⁻ pair (incoherent pair) is produced via

- $\gamma\gamma \rightarrow e^+e^-$
- $-\gamma e \rightarrow e e^+e^-$
- $e^+e^- \rightarrow e^+e^- e^+e^- \leftarrow \sigma$ is proportional to the <u>luminosity</u>

can use for Super-KEKB?

Incoherent pair simulation

We do the incoherent pair generation and beam-beam simulation for super-KEKB using CAIN (developed for ILC)

CAIN results

Luminosity = 2.91×10^{35}

#Pairs in a bunch=1.82pairs(e⁺ direction)+2.21pairs(e⁻ direction)

By measuring the ϕ distribution, we can obtain the beam size information

 $\sigma_{y} = 2\sigma_{y}^{0}$ $\sigma_{y} = 0.5\sigma_{y}^{0}$

Nominal beam parameters

GEANT4 detector simulation

After CAIN event generation, we apply GEANT4 detector simulation

Geometry of the Si tracker

Geometry in the simulation

1st layer Si Disk only

Radiative-BhaBha BG estimation

orightarrow distribution: e⁺e⁻ pair vs BhaBha (for 10⁻² sec)

Radiative-BhaBha BG $\rightarrow \sim 10\%$ of e⁺e⁻ pair

BhaBha BG estimation : If we have charge information

If we have charge information, BhaBha BG can be ignored → Self-tracking by 3-layer Si Disk?!

Trigger consideration

At first, we assume to use the APV25 chip for the Si Disk readout \rightarrow gate width = 150 nsec

- 1st priority should be the physics trigger
- For the beam-size measurement,

we want to take data via random trigger 1. Measure the beam size at the beginning of the shift Random trigger rate = 10kHz To take the 1/100 sec data, we need (1/100 sec) / (10kHz * 150 nsec) <u>~7sec.</u>

 \rightarrow We like to use ~1 min. to measure the beam-size / shift

2. Measure the beam size stability every hour (By accumulating 1 hour data) To accumulate 1/100 sec. data in 1 hour: we want the random trigger rate of 20Hz

We just start considering the Si disk forward tracker

- 1) The 1st priority is for the physics
 - We need simulation studies
 - B reconstruction, missing particle analysis, etc..
 - Based on the simulation, we design the Si tracker
- 2) We also like to measure the beam-size if possible
 - Further simulation studies
 - BG rejection by self-tracking with the 3-layer Si disk?
- 3) To design the forward tracker, we need to consider
 - Magnetic field non-uniformity near the final Q-system
 - Space around the IP region

New contributions are highly appreciated!

Where can we put the Si disks?

Incoherent pair simulation

Incoherent pair generation and beam-beam simulation with CAIN based on the Super-KEKB beam parameters

Setup

 $\begin{array}{ll} \beta_x, \ \beta_y \ \text{at IP} = (38.14, \ 1.00) \text{mm} & \ \epsilon_x, \ \epsilon_y = (6.43^*10^{-08}, \ 4.8^*10^{-10}) \ \text{rad} \cdot \text{m} \\ \sigma_z = 5 \text{mm} \\ N_p & = 1.2^*10^{11} (\text{LER}) \ 0.5^*10^{11} (\text{HER}) \\ \text{\#bunch} = 5000 \ T_{\text{rep}} \ 10^{-5} \ \text{sec} & \text{Gaussian tail cut off} = 4.5\sigma \\ \text{E}_{\text{beam}} = \text{e} + \ 3.5 \text{GeV} & \text{e} - 8.0 \text{GeV} \\ \text{Crossing angle 30mrad} & \text{Crab angle 15mrad} + 15 \text{mrad} \ (= \text{head on}) \end{array}$

CAIN results

Luminosity = 2.91E35

#pairs in a bunch = $1.82pair(e^+ direction) + 2.21pair(e^- direction)$ (# γ in a bunch = 4.8E9 (e⁺ direction) + 5.0E9 (e⁻ direction))

Electron Profile at T=0

~10⁶ pair particles / sec can reach to the detector region (r>1.5cm \rightarrow Pt > ~10MeV under 1.5T)

15:04:27(26-Nov-08) CAIN2.1e

Incoherent Pair momentum-angle Distribution

There is some non-uniform ϕ -distribution \rightarrow information of the beam size

CAIN results (for KEKB)

Electron Profile at T=0

CAIN results (for KEKB)

Incoherent Pair Pt Spectrum (for a bunch)

- 1-2 order smaller numbers of the Pt>10MeV pairs than that for super-KEKB
- The angle of the pair particle direction (for Pt>10MeV) is very small
 It is very difficult to use the pair monitor for current KEKB

Radiative BhaBha simulation

Using BHLUMI, we generate the BhaBha events

```
Setup
CMS energy = 10.95GeV
θ_min(CM) = 140 mrad θ_max = 1000[mrad]
→ 8 [deg] – 57[deg] in CM
```

BHLUMI results

- σ = 168.9 nb
- # generate = 1000,000 events
 - \rightarrow corresponds to ~2 sec data
 - (at Luminosity = 2.91E35 by CAIN)