#### **KATIE: 3.5**

#### TEVATRON RESULTS B. CASEY, FNAL

10

### Pono: 6.1

## OUTLINE

- Overall comparison on Tevatron and 4S/5S environments
- Cover selected  ${\rm B_s}$  physics results from DØ and CDF
  - Try and point out where measurements can be improved with 5S data (or complement 4S data)
- Topics:
  - B<sub>s</sub> lifetime
  - $\Delta\Gamma/\phi_s$
  - Rare decays

## **TEVATRON VERSUS BELLE**

|                           | Belle                                      | Tevatron                                                                      |  |
|---------------------------|--------------------------------------------|-------------------------------------------------------------------------------|--|
| Goal                      | Dedicated B program                        | Main purpose is high $p_T$                                                    |  |
| trigger                   | Inclusive                                  | μ, or displaced vertex (semi-inclusive)                                       |  |
| Hadronic<br>backgrounds   | ~3:1<br>~all B's written to tape           | Enormous, very small fraction of<br>produced B's written to tape              |  |
| PID                       | Excellent K/π/μ/e                          | Excellent μ, OK K/π,<br>poor e, for e from B                                  |  |
| neutrals                  | Excellent $\gamma$ , $\pi^0$ , $\eta$      | ~none from B                                                                  |  |
| Boost                     | ~0.5 parallel to silicon,<br>known apriori | ~1-2 perpendicular to silicon (sensitivity to $\Delta m_s$ ), unknown apriori |  |
| B <sub>s</sub> production | Coherent, no tagging                       | Incoherent, tagging OK                                                        |  |

If you can do it, you can do it better at Belle

Still many interesting things you can only do now at the Tevatron

З

B. CASEY, BNM 2008

### **TEVATRON VERSUS BELLE**

B. CASEY, BNM 2008

B-factory numbers approximated for 250 fb<sup>-1</sup>, Tevatron numbers estimated at 1 fb<sup>-1</sup>

|                                      | Belle | CDF  | DØ   |                           |
|--------------------------------------|-------|------|------|---------------------------|
| $B^+ \rightarrow J/\psi K^+$         | ~18k  | ~18k | ~18k | Dimuons about same        |
| $B_s \rightarrow J/\psi \phi$        | ?     | ~2k  | ~2k  | Tev on top for now        |
| $B_s \rightarrow D_s (\phi \pi) \pi$ | ?     | ~2k  | ~50  | Vertex versus muon        |
| $B_d \rightarrow \pi^+ \pi^-$        | 605   | 882  | -    | trigger                   |
| $B_d \rightarrow \rho^+ \rho^-$      | 205   | -    | -    | h⁺h⁻ ~same but no π⁰s     |
| $B_s \rightarrow K^+ K^-$            | ?     | 1473 |      | Tev on top for now        |
| $B_s \rightarrow \phi \gamma$        | 18    | -    | -    | Some things only<br>at 5S |

### LIFETIME RATIOS

B. CASEY, BNM 2008

### Sensitive probe of higher order terms in HQE

|                                | Theory*           | Data           | What we learned                                                                        |
|--------------------------------|-------------------|----------------|----------------------------------------------------------------------------------------|
| B+/B <sub>d</sub>              | 1.06 ± 0.02       | 1.071 ± 0.009  | 9 1/m <sub>b</sub> <sup>3</sup> is important, and<br>can be calculated                 |
| $\Lambda_{b}/B_{d}$            | 0.90 ± 0.05       | 0.90 ± 0.03**  | Non-perterbative terms<br>important, and lattice is<br>working                         |
| B <sub>s</sub> /B <sub>d</sub> | 1.00 ± 0.01       | 0.94 ± 0.02*** | <ul> <li>Both 1/m<sub>b</sub><sup>3</sup> and non-<br/>perterbative effects</li> </ul> |
| 1: Franco<br>2: PDC07          | et al hep-ph/0203 | 089            | supposed to be small                                                                   |
| 3: HFAG0                       | 7 (not recent CDF | )              | Statistics or something else                                                           |

# **B**<sub>s</sub> LIFETIME

**B. CASEY, BNM 2008** 

### Complicated by sizeable $\Delta \Gamma = \Gamma_{H} - \Gamma_{L}$



40% reduction in error including FS But also drives discrepancy with B<sub>d</sub>

# SEMILEPTONIC B<sub>s</sub> LIFETIME



Apply boost Reconstruct signal as D<sub>s</sub> correction correlated with muon determined from MC 3000 DØ Runll preliminary 0.1 dof = 0.64 0.05 7 1500 0.4 0.5 0.6 0.70.8 0.0  $p_{\gamma}(D(\mu^*) \neq p_{\gamma}(\dot{B}_{\lambda}))$ 1000 Fit for lifetime 500 DØ, 0.4 fb<sup>-1</sup> Candidates per 50  $10^{3}$ 2.05 Mass(\$ n) [GeV/c<sup>2</sup>] 10<sup>2</sup> ~90% signal,  $\gamma^{2}/dof = 1.06$ ~10% peaking backgrounds: 10 B→DsD, direct DsD  $\tau_{FS}(B_s) = 1.398 \pm 0.044^{+0.028}_{-0.025} \, ps$ 10-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 Pseudo Proper Decay Length (cm)

B. CASEY, BNM 2008

# HADRONIC B<sub>s</sub> LIFETIME



Data - MC comparison

Data SB sub.

Realistic M.C.

ct [cm]



B. CASEY, BNM 2008

#### Correct for trigger efficiency

0.1

 $D_s \rightarrow \phi \pi$ 

**∮→KK** 

0.15

Fit for lifetime

0.15

0.2

0.2

 $B_s \rightarrow D_s \pi$ 

0.05

0.05

0

-0.05

0.1

0.12

0.14

Data

Global fit

Signal

0.25

0.25

0.3

0.3

0.35

N of  $B_s$  : 472  $\pm$  27

Combinatorial

0.35 ct [cm]

B. CASEY, BNM 2008



## $B_s$ lifetime at the 5S

- Less uncertainty associated with high statistics semileptonic modes
  - known boost
  - background samples from 4S
- Tevatron:
  - Hadronic results still stat limited
  - semileptonic can move to direct lifetime ratio measurement to reduce sys.
  - Both cases: Not far from sys. limited
- If there is a  ${\sf B}_{\sf s}$  lifetime problem, it needs to be confirmed in a b-factory environment
- we will always want a good  ${\sf B}_{\sf s}$  lifetime measurement independent of  $J/\psi~\phi$

### **BS MIXING PARAMETERS**

$$|g^{\pm}(t)|^{2} = \frac{e^{-\Gamma t}}{2} \left[ \cosh\left(\frac{\Delta\Gamma}{2}t\right) \pm \cos(\Delta m t) \right]$$

$$\Delta m = m_{H} - m_{L} = 2|m_{12}|$$

$$\Delta \Gamma = \Gamma_{L} - \Gamma_{H} = 2|\Gamma_{12}|\cos\phi$$

$$\phi = \arg\left(-\frac{m_{12}}{\Gamma_{12}}\right)$$

$$\Gamma(M \Rightarrow \overline{M}) \neq \Gamma(\overline{M} \Rightarrow M)$$

$$\begin{cases} \psi(m) = \exp\left(-\frac{m_{12}}{\Gamma_{12}}\right) \\ \psi(m) = \exp\left(-\frac{m_{12}}{\Gamma_{12}}\right)$$

B. CASEY, BNM 2008

## $\Delta\Gamma$ and CPV in the $B_s$ system



- all measurements are untagged (or time-integrated)
  - Sensitivity to CPV in untagged samples if  $\Delta\Gamma \neq 0$
- Everything is  $\Delta \Gamma \mathbf{x} \mathbf{f}(\phi_s)$ 
  - Theory prediction for  $\Delta\Gamma$  very important
    - Cant be trusted without  $\tau(B_s) / \tau(B_d)$
- D<sub>s</sub><sup>(\*)</sup>D<sub>s</sub><sup>(\*)</sup> theory errors uncontrolled
  - Best  $\Delta\Gamma$  measurement but not used in constraint

# $\Delta\Gamma$ and $D^{(*)}{}_{s}D^{(*)}{}_{s}$



Partial reconstruction more complicated but gives direct access to  $\Delta\Gamma_{\rm CP}$ 

13

B. CASEY, BNM 2008

# $\Delta \Gamma$ and $\mathbf{D}_{\mathbf{s}}$ K

**B. CASEY, BNM 2008** 



14

Recently proposed by to use lifetime measurement in D<sub>s</sub>K to determine sign of strong phases for J/ $\psi \phi$  and remove 2-fold ambiguity

(Nandi, Nierste hep-arXiv:0801.0143)



## $\Delta\Gamma$ and Untagged J/ $\psi \phi$





Comparing the two (plus interference terms) allows CPV measurement

B. CASEY, BNM 2008

## **TAGGED VERSUS UNTAGGED**



16

#### Adding tagging where available increases sensitivity (but $\varepsilon D^2 \sim 5\%$ )



More importantly, extra terms partially reduce 4 fold ambiguity to 2 fold ambiguity

**B. CASEY, BNM 2008** 

# $\Delta\Gamma/\phi_s$ at the 5S

- Tevatron: 10 publications on  $\Delta\Gamma$  and  $\phi_s$  so far, only 1 includes time dependent tagging
  - Combined DØ/CDF: tagged/untagged J/ $\psi$   $\phi,$  A\_{S,},  $\tau_{FS}$  will be interesting
- If  $\phi_s$  is large:
  - Decreasing ambiguities more important than tagging
  - $BF(D_s^{(*)}D_s^{(*)}), \tau(D_sK)$
- If  $\phi_s$  is large:
  - Tevatron + Belle can discover new physics before LHC
    - At least we need a tie breaker for choosing conventions
- If  $\phi_s$  is small:
  - Precision  $\tau$  and  $\Delta\Gamma$  measurements will help guide theory and extraction of  $\phi_s$  at LHCb

### **New Physics and Rare decays**

 $b \rightarrow s$ : Once everyone's best guess for new physics





### **New Physics and rare decays**

 $b \rightarrow s$ : Still everyone's best guess for new physics.

But now need to look where we have a chance to see small effects

CPV phases:Interference: $\Delta B = \Delta s = 1: b \rightarrow s\overline{ss},$  $b \rightarrow s|^+|^ \Delta B = \Delta s = 2: \phi_s$ 

Large SM suppression:  $B_s \rightarrow \mu \mu$   $(B^+ \rightarrow \tau \nu)$  $(K \rightarrow \pi \nu \nu)$  (Closely related to b  $\rightarrow$  s)

## RADIATIVE DECAY: $\mathbf{B} \rightarrow \mathbf{V} \mu \mu$

20

18.5 ± 6.7 K\*

**B. CASEY, BNM 2008** 





Should add not-trivial stats for world average A<sub>FB</sub> in next few years

# **ANNIHILATION:** $B_s \rightarrow \mu \mu$

~most important thing we are doing in the Tevatron B program right now



21

B. CASEY, BNM 2008

### $B_s \rightarrow \mu \mu$ past and future

- Step 1 (0.5-1 fb<sup>-1</sup>):
  - Do we understand  $e(\mu\mu)/e(K\mu\mu)$ ?
    - Not at all trivial since trigger is tight,  $p_{\rm T}$  distributions are different, and B  $p_{\rm T}$  not well known
  - Can we reduce combinatoric background?
- Step 2 (1-2 fb<sup>-1</sup>):
  - Multivariate background suppression
  - $B \rightarrow h^{+}h^{-} (CDF)$
- Step 3 (2-4 fb<sup>-1</sup>):

**B. CASEY, BNM 2008** 

- Smarter pre-selection
- $B \rightarrow h^+h^-$ ? (CDF and DØ)
- Fake tracks at high lum (DØ)
- Specific cuts to remove B background



### $\mathbf{B_s} \rightarrow \mu \mu \text{ VERSUS } \mathbf{B} \rightarrow \tau \tau$

- No serious attempt (yet) at  $B_s \rightarrow \tau \tau$  at Tevatron
- At B factories?
  - BaBar limit uses fully reconstructed B data set  $\rightarrow$  not interesting (4 x 10<sup>-3</sup>)
  - Can it be done without reconstructing the other B?
    - Look at Belle note 296 for examples of finding back-to-back tau's in hadronic events
  - 4S/5S lum ratio indicates  $\rm B_{d}$  decay just as possible as  $\rm B_{s}$  decay
- If there is a factor of 10 enhancement, Tevatron  $\mu\mu$  + B factory  $\tau\tau$  would be very interesting

### FUTURE FLAVOR AT FERMILAB

- Many very exciting questions will be difficult to answer at LHC (or at least require very large data sets)
  - How does the higgs couple to fermions?
  - How does TeV scale physics influence flavor?
  - Is there lepton flavor violation at the TeV scale?
  - Leptogenesis?
  - Beyond TeV scale physics?

### FUTURE FLAVOR AT FERMILAB

- ~Current accelerator complex:
  - Low mass higgs  $\rightarrow$  bb at Tevatron
  - NOvA
  - $\mu \rightarrow e$  conversion
- Project X:
  - sensitivity to minimal flavor violation signatures in kaons
  - Next generation  $\mu \rightarrow$  e conversion
  - Neutrino CPV
  - Long baseline to DUSEL (proton decay)
  - dedicated fixed target tau/charm

Possibility for a very exciting US accelerator-based program complementing or competing with flavor programs in Asia/Europe



### CONCLUSIONS

- Many exciting B<sub>s</sub> results from Tevatron and more to come
- Results from the 5S can have a very significant impact, particularly on CPV measurements

– When you think of  $\phi_s$ , think big

 Potential for exciting accelerator based program next decade in US that will complement super B factory and LHC results