

Measurements at the Υ (5S) Resonance

BNM 2008, Atami January 24th, 2008

E. Baracchini, M. Bona, M. Ciuchini,F. Ferroni, M. Pierini, G. Piredda,F. Renga, L. Silvestrini, A. Stocchi

Outline

- Why the Y(5S) Resonance?
- Experimental Challenges @ Y(5S);
- The Belle Pioneer Runs;
- The Super-B scenario (JHEP 0708:005,2007);
- What could be done now.

Why the $\Upsilon(5S)$ resonance?

$b \rightarrow d$

- Many precision measurement already available;
- More measurements with a SuperB at the Y(4S);

BUT...

• At present, no evidence for NP.

b → s

- Large NP effects not ruled out by present measurements;
- Can be studied using through Radiative Penguins and CP asymmetries in the B_d sector

BUT...

- Large theoretical uncertainties in the B_d sector w.r.t. the experimental reach
- A new approach constraining the Bs mixing phase:
 - lifetime difference $\Delta \Gamma_{
 m s}$;
 - CP asymmetry in mixing $(A_{_{\rm SL}})$;

Running at the Υ (5S) resonance!

Experimental Challenges

INFN

Event reconstruction

- Reconstruction techniques inherited from current B-factories:
 - We don't reconstruct the additional particles $(\pi\,,\gamma)$ produced in the Y(5S) decay chain;
 - separation of different components using kinematic variables.

B pairs coherence

- B pairs at the Y(5S) mainly produced in association with photons;
- What about the coherence of the B pairs?
- It can be shown that:

The Super-B scenario (just few examples)

Time Integrated Analysis

- $B_d \rightarrow \pi^0 \pi^0$:
 - Rate and asymmetry used to determine a through an isospin analysis —> ambiguity;
 - TD analysis at the Y(4S) not enough sensitive to extract both Re(λ) and Im(λ) (or equivalently S and C);
 - Time Integrated Analysis with B*B events at the Y(5S) allow to constraint Im($\lambda)$ and reduce the ambiguity.

Using the Δt sign

• Δ t distribution for Bs*Bs* events, with one B into a CP eigenstate and the other one into a tagging state:

$$P(\Delta t) \propto e^{\frac{-|\Delta t|}{\tau}} \left[\kappa_1 \cosh\left(\frac{\Delta\Gamma_s \Delta t}{2}\right) + \kappa_2 \cos\left(\Delta m_s \Delta t\right) + \kappa_3 \sinh\left(\frac{\Delta\Gamma_s \Delta t}{2}\right) + \kappa_4 \sin\left(\Delta m_s \Delta t\right) \right]$$

$$sine and hyp. sine terms give a \Delta t > 0 vs. \Delta t < 0$$

$$asymmetry$$

$$Toy MC studies:$$

$$Sensitivity to \beta_s from$$

$$B \rightarrow J/\Psi \phi$$

INFN

10

- Sensitive to NP;
- Clean determination from UT fit via:

$$\frac{\Delta m_d}{\Delta m_s} = \frac{m_{B_d} f_{B_d} \hat{B}_{B_d}}{m_{B_s} f_{B_s} \hat{B}_{B_s}} \frac{|V_{\rm td}|^2}{|V_{\rm ts}|^2}$$

• Additional constraint could come from radiative decays:

INFN

y from KAA

Ciuchini et al. (hep-ph/0602207)

• $B_s \rightarrow K\pi$ Dalitz analysis can access the amplitudes:

$$A_s^{K^*\pi} = A(B_s \to K^{*-}\pi^+) + \sqrt{2}A(B_s \to \bar{K}^{*0}\pi^0)$$

= $-V_{ub}^*V_{ud}(E_1 + E_2)$,
 $\bar{A}_s^{K^*\pi} = A(\bar{B}_s \to K^{*+}\pi^-) + \sqrt{2}A(\bar{B}_s \to K^{*0}\pi^0)$
= $-V_{ub}V_{ud}^*(E_1 + E_2)$,

INFN

• γ from the ratio:

$$R_d = \frac{\bar{A}_s^{K^*\pi}}{A_s^{K^*\pi}} = \frac{V_{ub}V_{ud}^*}{V_{ub}^*V_{ud}} = e^{-2i\gamma}$$

- NP can generate a different result w.r.t. the tree level estimate of γ;
- in a Super-B factory, better π^{0} resolution than LHCb
- relative phase between B and \overline{B} amplitudes needed (TD or LHCb)

Lifetime difference $\Delta\Gamma_{s}$

- Sensitive to NP phase;
- Different experimental methods:
 - we investigated the sensitivity of an angular analysis of Bs \rightarrow J/ $\Psi\,\phi$ (Dighe et al. hep-ph/9804253).

ATTENTION: Alternative methods could be effective even at low luminosity (see Drutskoy talk at BNM2006)

INFN

Interesting Measurements at present B-Factories

Semileptonic Asymmetries → NP in the Bs mixing

Semileptonic BR → Fundamental normalizations for had.

colliders

 $Bs \rightarrow \gamma \gamma \ decay \rightarrow complementarity with b \rightarrow s \gamma$

 $2-body Bs decays \rightarrow Bd - Bs SU(3) tests$

Spectroscopy → tetraquarks

Belle Pioneer Runs (I)

Belle realized 2 Runs (1.86 fb⁻¹ + 23.6 fb⁻¹) at the Y(5S);

Engineering Run (1.86 fb⁻¹ in 3 days)

- Energy scan to find the Y(5S) peak (10.869 GeV);
- ~100% of Y(4S) typical luminosity;
- Results:
 - BR(Bs →Ds*(-) π +) = (0.68 ± 0.22 ± 0.16)%
 - BR (Bs $\rightarrow J/\psi\phi$) = (0.9 ± 0.6 ± 0.2) %
 - Observation of Bs \rightarrow Ds*(-)ho+ and Bs \rightarrow J/ $\psi \eta$
 - $-\sigma(e+e \rightarrow Bs*Bs*)/\sigma(e+e \rightarrow Bs(*)Bs(*)) = (93_{-9}^{+7} \pm 1)$
 - $M(Bs^*) = (5418\pm1\pm3)MeV$ and $M(Bs) = (5370\pm1\pm3)MeV$
 - Bs(*) production ratio: $fs = (18 \pm 1.3 \pm 3.2)$ %

Francesco Renga - BNM 2008

Phys. Rev. D 76 012002 (2007)

15

INFN

Belle Pioneer Runs (II)

23.6 fb⁻¹ Run

arXiv:0710.1647

- Results:
 - BR (Bs →X+ e- V) = (10.9 ± 1.0 ± 0.9) %
 - BR (Bs →X+ μ ν) = (9.2 ± 1.0 ± 0.8) %
 - BR (Bs $\rightarrow \gamma \gamma$) < 8.7 x 10⁻⁶ \rightarrow better than PDG!
 - BR (Bs $\rightarrow \phi \gamma$) = (5.7_{-1.5}^{+1.8}_{-1.1}^{+1.2}) x 10⁻⁵

Belle Pioneer Runs (II)

23.6 fb⁻¹ Run

arXiv:0710.1647

- Results:
 - BR (Bs →X+ e- V) = (10.9 ± 1.0 ± 0.9) %
 - BR (Bs →X+ μ ν) = (9.2 ± 1.0 ± 0.8) %
 - BR (Bs $\rightarrow \gamma \gamma$) < 8.7 x 10⁻⁶ \rightarrow better than PDG!
 - BR (Bs $\rightarrow \phi \gamma$) = (5.7_{-1.5}^{+1.8}_{-1.1}^{+1.2}) x 10⁻⁵

Radiative Bs decays can be accessed

Semileptonic Asymmetry

$$\begin{split} A_{\rm SL} &\equiv \frac{\Gamma(\overline{B^0} \to l^+ X) - \Gamma(\overline{B^0} \to l^- X)}{\Gamma(\overline{B^0} \to l^+ X) - \Gamma(\overline{B^0} \to l^- X)} = \\ &= -\operatorname{Re}\left(\frac{\Gamma_{12}}{M_{12}}\right)^{\rm SM} \frac{\sin(2\phi_{\rm B\,d})}{C_{\rm B\,d}} + \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)^{\rm SM} \frac{\cos(2\phi_{\rm B\,d})}{C_{\rm B\,d}} + \end{split}$$

- B_{d,s} sector:
 - Current experimental sensitivity cannot bound CKM in the SM;

INFN

18

- Bounds on NP parameter space;
- B_d B_s admixture:
 - measurements from D0 (dimuons charge asymm.);
 - A_{CH} sensitive to NP effects.

Semileptonic Asymmetry

A B-Factory at the Υ (5S) can access both $A_{\rm CH}$ and $A^{\rm s,d}_{\rm SL}$

Ds(*) l v

 Counting Ds(*)⁺l⁻ v and Ds(*)⁻l⁺ v events against semilept. or hadronic tag;

DILEPTONS

- Counting dilepton pairs;
- Possibility to access A_{CH};

Semileptonic Bs Decays

- Semileptonic Bs decays:
 - Fundamental Normalization for had. colliders;
 - if a reasonable error is reachable, it would justify by itself a Y(5S) run;
- Exclusive Bs \rightarrow D_s(*) l V:
 - No published result from Belle Runs;
 - Expected errors with 25 $\rm fb^{-1}$ should be ~10% (according to Drutskoy talk at BNM 2006).

B_s 2-body Decays (I)

- Several Bs decays can be compared with the corresponding Bd decays to test SU(3);
- Interesting channels:
 - ${\rm B_s}$ \rightarrow ${\rm D_s}^-\pi^+$ (BR \sim 3 x 10^{-3});
 - $B_{\rm s}$ \rightarrow $D^0 K^0$ (BR \sim 3 x $10^{-4});$
 - •••
- Efficiency and yields:
 - few percent efficiency;
 - ~ 0.1M Bs pairs per fb^{-1} ;

 $D_s\pi \sim 5 \text{ evts / } fb^{-1}$ DK ~ 0.5 evts / fb^{-1}

More studies (theory & experiments) needed

$B_s \rightarrow \gamma \gamma$

- Complementarity with b \rightarrow s γ ;
- SM BR ~ 10⁻⁶, NP could enhance it up to 1 order of magnitude (SUSY with R-parity violation BR ~ 5 x 10⁻⁵, hep-ph/0404152);
- Belle results:
 - BR < 8.7 x 10^{-6} @ 23.6 fb⁻¹ \rightarrow discovery could be around the corner;
 - Efficiency (Belle): ~20% (BaBar and Belle Bd \rightarrow $\gamma\gamma$ efficiency was ~10%...);
 - Background under-fluctuation: Nsig = $-6 \pm 2 \rightarrow$ could have drawn down the UL;
- UL well below 5 x 10^{-5} at 100 fb⁻¹ seems to be possible.

Spectroscopy (I)

• Belle observed a huge and completely unexpected signal for $Y(5S) \rightarrow Y(1S)\pi\pi$:

 $\Upsilon(1S) \pi^+ \pi^-$ at the Y(4S)

From S.L.Olsen at the BES-Belle-CLEO-BaBar Joint Workshop on Charm Physics and arXiv:0710.2577

INFN

23

Spectroscopy (I)

• Belle observed a huge and completely unexpected signal for $Y(5S) \to Y(1S)\pi\pi$:

• Belle observed a huge and completely unexpected signal for $Y(5S) \to Y(1S)\pi\pi$:

25

Spectroscopy (II)

Many Thanks to R. Faccini and M. Gaspero!

- A tetraquark around the Y(5s)?
 - Scan of energy around the peak & look at $B_{\rm s,d}(\,^{*})\,B_{\rm s,d}(\,^{*})\,/\,Y(1\,{\rm s})$ ratio.
- Other tetraquarks:
 - Look at Y(5s) \rightarrow Y(1s) + X and look at the invariant mass of Y(1s) + n π (various states expected).
- Resonant structures in the dipion mass spectrum?

- e.g. Y(5s)
$$\rightarrow$$
 Y(1s)f₀(1370)
 $\rightarrow \pi \pi$
 4π Look for the 4π state

- hints on the nature of the f_(1370);
- glue-rich environment (glueballs?).

B-Factories vs. Tevatron

- SL asymmetries (hep-ph/0702163):
 - A^{s}_{SL} can be accessed at Tevatron subtracting A^{d}_{SL} to A_{CH} ;
 - $\sigma({\rm A^s}_{\rm SL})$ at Tevatron ~ 0.02 \rightarrow we can be competitive (and much more clean) with ~50 fb^-1;
- Branching Ratios (arXiv:0707.1509):

Quantity	CDF	$\left(\int \mathscr{L} \mathbf{d}t, \mathbf{f}\mathbf{b}^{-1}\right)$	DØ	$\left(\int \mathscr{L} \mathbf{d}t, \mathbf{f}\mathbf{b}^{-1}\right)$
$Br(B_s \to D_s^{(*)+} D_s^{(*)-})$	_		$0.071 \pm 0.032^{+0.029}_{-0.025}$	(1)
$Br(B_s \to D_s^+ D_s^-)/Br(B_d \to D_s^+ D^-)$	$1.67 \pm 0.41 \pm 0.47$	(0.355)		

- ~30 fb⁻¹ needed to be competitive;
- Rare decays:
 - They do Bs $\rightarrow \mu \mu$ (UL ~ 10⁻⁷) but not Bs $\rightarrow \gamma \gamma$;

Conclusions

- The Y(5S) offers a rich physics case, mainly related to b → s transitions;
- Although a Super-B factory would be needed to completely exploit these potentialities, even ~ 100 fb⁻¹ sample could provide:
 - Semileptonic Asymmetries;
 - NP in Bs $\rightarrow \gamma \gamma$;
 - Bs Semileptonic Decays;
 - Bs radiative decays (Bs $\rightarrow \phi \gamma$);
 - some hadronic decays (2-body) up to few 10^{-4} BR;
 - Spectroscopy;
- The Semileptonic Bs BR can be measured with good precision → *fundamental normalization* for had. colliders;

If one of the present B-Factories takes the positive decision to run at Y(5S), we suggest to collect $\sim 100 \text{ fb}^{-1}$ to ensure interesting results and competitiveness with Tevatron

- Semileptonic Asymmetries;
- NP in Bs $\rightarrow \gamma \gamma$;
- Bs Semileptonic Decays;
- Bs radiative decays (Bs $\rightarrow \phi \gamma$);
- some hadronic decays (2-body) up to few 10^{-4} BR;
- Spectroscopy;
- The Semileptonic Bs BR can be measured with good precision → fundamental normalization for had. colliders;

Backup Slides

Event reconstruction

 $BB\pi$ vs. BB SEPARATION

CAVEAT: the BB π background can be important in final states with an odd number of s quarks (KK π , etc.):

- B_s decays CKM suppressed w.r.t. B_d decays;
- B_s decays (sometimes) suppressed by dynamic (penguins or annihilation vs tree).

INFN

NOTE: Only UL for the BB π BR – We use the UL (worst case).

$\Delta \Gamma_{\rm s} / \Gamma_{\rm s}$ measurement from *Bf* (B_s -> D_s^{+(*)} D_s^{-(*)})

$$\Delta \Gamma_{\rm s} = 2 \mid \Gamma_{12} \mid \cos \phi_{\rm s} \qquad \Delta \Gamma_{\rm s}^{\rm SM} = \Delta \Gamma_{\rm CP}^{\rm s} = 2 \mid \Gamma_{12} \mid$$

Since $\Delta\Gamma_{CP}^{s}$ is unaffected by NP, NP effects will decrease $\Delta\Gamma_{s}$.

$$\Delta \Gamma_{CP}{}^{s} = \Sigma \Gamma(CP=+) - \Sigma \Gamma(CP=-)$$

B_s->D_s^{(*) +} D_s^{(*) -} decays have *CP*- even final states with largest *BF's* of ~ (1-3)% each , saturating $\Delta\Gamma_s/\Gamma_s$.

$$\frac{\Delta \Gamma_{CP}}{\Gamma_{S}}^{S} \approx \frac{Bf(B_{s} - D_{s}^{(*)} + D_{s}^{(*)})}{1 - Bf(B_{s} - D_{s}^{(*)} + D_{s}^{(*)}) / 2}$$

To prove this formula experimentally : a) Contribution of $B_s \rightarrow D_s^{+(*)} D_s^{-(*)} n\pi$ is small b) Most of $B_s \rightarrow D_s^{+} D_s^{-*} D_s^{-*}$ and $B_s \rightarrow D_s^{+*} D_s^{-*}$ states are CP- even.

Assuming corrections are small (~5-7%), *Bf* measurement will provide information about $\Delta\Gamma_{CP}^{s}$ or $|\Gamma_{12}|$.

$\Delta \Gamma_{\rm s} / \Gamma_{\rm s}$ measurement from *Bf* (B_s -> D_s^{+(*)} D_s^{-(*)})

$$\frac{\Delta \Gamma_{CP}}{\Gamma_{s}}^{s} \approx \frac{Bf(B_{s} - D_{s}^{(*) +} D_{s}^{(*) -})}{1 - Bf(B_{s} - D_{s}^{(*) +} D_{s}^{(*) -}) / 2} < =$$

should be compared with direct $\Delta\Gamma_s/\Gamma_s$ measurement to test SM.

$\Delta\Gamma_s/\Gamma_s$ lifetime difference can be measured directly with high accuracy at Y(5S) and also at Tevatron and LHC experiments.

UT in the SM

ASSUMING 75ab⁻¹ at the $\gamma(4S)$ and 30ab⁻¹ at the $\gamma(5S)$

φ = 2.3%
δη = 1.8%

INFN

34

Francesco Renga - BNM 2008

TVDIVM-VR

UT beyond the SM

ASSUMING 75ab⁻¹ at the $\gamma(4S)$ and 30ab⁻¹ at the $\gamma(5S)$

INFN

35

Super-B vs. LHCb

	LHCb		$\Upsilon(5S)$	
Observable	$2fb^{-1}$	$10 f b^{-1}$	$1ab^{-1}$	$30ab^{-1}$
$ V_{td}/V_{ts} $ from Δm_s	0.010	0.002	_	_
$\Delta\Gamma/\Gamma$	0.0092	0.004	0.12	0.02
eta_{s} from angular analysis	0.66°	0.29°	20°	8°
A_{SL}^s	-	-	$\pm 0.006\pm 0.004$	$\pm 0.001\pm 0.004$
A_{CH}	-	-	$\pm 0.0015 \pm 0.004$	$\pm 0.0003 \pm 0.004$
eta_s from $J/\psi\phi~\Delta t~{ m sign}$	-	-	20°	8°
$BR(B_s ightarrow \mu \mu)$	$1.2 \cdot 10^{-9}$	$0.7 \cdot 10^{-9}$	$< 10^{-7}$	$< 1.30 \cdot 10^{-8}$
$ V_{td}/V_{ts} $ from radiative decays	0.03	0.015	0.10	0.031
$BR(B_s ightarrow \gamma \gamma)$	-	-	38%	7%

Table 6: Expected errors for different observables at LHCb [39, 77, 78] and at a B-Factory running at the $\Upsilon(5S)$ resonance.

INFN

36