Future of Lattice Calculations for b Physics

Jonathan Flynn

School of Physics \& Astronomy
University of Southampton
BNM2008 Atami Japan, January 2008

Outline

Introduction

Required parameters

Target simulations
b physics

Conclusions

Introduction

Required parameters

Target simulations
b physics

Conclusions

Introduction

Will we be able to calculate hadronic parameters for b-physics with 1% or a few $\%$ precision by 2015 ?

Consider

- Required simulation parameters
- Scaling formulae and computational costs
- Requirements for b-physics I rely heavily on:
- S Sharpe, Weak Decays of Light Hadrons, LQCD Present and Future, Orsay 2004
- V Lubicz, CKM Fit and Lattice QCD, SuperB IV, Monte Porzio Catone 2006
- C Sachrajda, Prospects for Lattice Phenomenology, LHCb Upgrade Workshop, Edinburgh 2007

Errors in lattice calculations

- Statistical
- Systematic

Errors in lattice calculations

- Statistical
- Arise from Monte Carlo evaluation of functional integrals
- Rule of thumb: about 100 independent configurations for ~ 1\% statistical error
- ... but depends on quantity studied, lattice volume, exact formulation of LQCD used
- Systematic

Errors in lattice calculations

- Statistical
- Arise from Monte Carlo evaluation of functional integrals
- Rule of thumb: about 100 independent configurations for ~ 1\% statistical error
- ... but depends on quantity studied, lattice volume, exact formulation of LQCD used
- Systematic
- Discretisation and continuum extrapolation ($a \neq 0$)
- Light quarks: chiral extrapolation ($m_{l} \rightarrow m_{u d}$)
- Finite volume ($L \neq \infty$)
- Heavy quarks ($m_{Q} \rightarrow m_{c, b}$)
- Renormalisation constants (matching lattice to continuum)

Introduction

Required parameters

Target simulations
b physics

Conclusions

Lattice spacing

Estimate from Sharpe, LQCD present and future, Orsay 2004 Assume using $O(a)$-improved action for observable \mathcal{O}

$$
\mathcal{O}_{\text {latt }}=\mathcal{O}_{\text {phys }}\left[1+c_{2}(a \wedge)^{2}+c_{n}(a \wedge)^{n}+\cdots\right]
$$

- assume c_{2}, c_{n} are $O(1)$
- $n=3,4$ depending on action used
- $\wedge \sim \Lambda_{\mathrm{QCD}}$ for light quarks
- $\wedge \sim m_{Q}$ for heavy quarks Q (so more work needed to avoid lattice artefacts ...see below)
Simulate at $a_{\min }$ and $\sqrt{2} a_{\text {min }}$ and extrapolate linearly in a^{2}. Resulting error:

$$
\frac{\Delta \mathcal{O}_{\text {phys }}}{\mathcal{O}_{\text {phys }}} \approx c_{n}\left(2^{n / 2}-2\right)\left(a_{\min } \Lambda\right)^{n}
$$

Lattice spacing estimates

$$
\frac{\Delta \mathcal{O}_{\text {phys }}}{\mathcal{O}_{\text {phys }}} \approx c_{n}\left(2^{n / 2}-2\right)\left(a_{\min } \Lambda\right)^{n}
$$

For 1\% error (taking $c_{n}=1$)

\wedge	0.5 GeV	0.8 GeV	1.5 GeV	4.5 GeV
$a_{\min }(n=3)$	0.091 fm	0.057 fm	0.030 fm	0.010 fm
$a_{\min }(n=4)$	0.105 fm	0.066 fm	0.035 fm	0.012 fm

- Current lattice spacings $0.05 \mathrm{fm} \leq a \leq 0.13 \mathrm{fm}$
- OK for light quarks
- Daunting for charm
- Need effective theories for b

Minimum light quark mass

Estimate from ChPT:

$$
\mathcal{O}_{\text {latt }}=\mathcal{O}_{\text {phys }}\left[1+c_{2}\left(\frac{m_{\pi}}{m_{\rho}}\right)^{2}+c_{4}\left(\frac{m_{\pi}}{m_{\rho}}\right)^{4}+\cdots\right]
$$

- Assume c_{n} are $O(1)$
- Simulate at $R_{\text {min }}=\left(m_{\pi} / m_{\rho}\right)_{\min }$ and $\sqrt{2} R_{\text {min }}$ and extrapolate linearly in R^{2}
- Resulting error:

$$
\frac{\Delta \mathcal{O}_{\text {phys }}}{\mathcal{O}_{\text {phys }}} \approx 2 c_{2}\left(\frac{m_{\pi}}{m_{\rho}}\right)_{\min }^{4}
$$

- For 1% error (taking $c_{2}=1$):

$$
\left(\frac{m_{\pi}}{m_{\rho}}\right)_{\min } \approx 0.27 \text { or } \frac{m_{l}}{m_{s}} \approx \frac{1}{11} \text { or } m_{\pi, \min } \approx 210 \mathrm{MeV}
$$

Finite volume: minimum box size

- FV effects matter when aiming for 1\% precision
- Dominant effect from pion loops \Rightarrow estimate using ChPT
- Example: FV effects in $f_{B_{s}} / f_{B_{d}}$ from HMChPT (Arndt, Lin, prd70 014503)

(a)
$M_{\pi}(\mathrm{GeV})$

Finite volume effects

- For quantities without final state interactions

$$
\frac{\Delta \mathcal{O}_{\text {phys }}}{\mathcal{O}_{\text {phys }}} \approx c e^{-m_{\pi} L}
$$

where c is $O(1)$, but depends on quantity calculated

- For 1% error (with $c=1$)

$$
m_{\pi} L \approx 4.6
$$

- If $m_{\pi}=200 \mathrm{MeV}$ then

$$
L \approx 4.5 \mathrm{fm}
$$

Heavy quarks

- From discussion above, a relativistic b quark would require $a m_{b} \ll 1$, say

$$
a \approx 0.01 \mathrm{fm}
$$

- This is too small even for Pflop computers
- Various approaches:
- effective theories
- interpolation between static limit and charm region
- ... see later

Renormalisation (Matching)

Della Morte, Fritzch, Heitger, JHEP 0702:079
$\mathcal{O}^{\mathrm{R}}(\mu)=Z(a \mu, g) \mathcal{O}^{\text {latt }}(a)$

- Nonperturbative (points) versus perturbative (curves) renormalisation of static-light axial current
- $N_{f}=2$
- PT off by $\sim 5 \%$ at hadronic scale
- Use NPR for 1\% precision

Introduction

Required parameters

Target simulations
b physics

Conclusions

Target simulations: aiming at 1\% precision

	Light quarks	Charm quarks
$N_{\text {conf }}$	120	120
a	$1 / 20 \mathrm{fm}$	$1 / 30 \mathrm{fm}$
a^{-1}	$\approx 4 \mathrm{GeV}$	$\approx 6 \mathrm{GeV}$
m_{l} / m_{s}	$1 / 12$	$1 / 12$
m_{π}	200 MeV	200 MeV
L	4.5 fm	4.5 fm
Vol	$90^{3} \times 180$	$140^{3} \times 280$

- Tough for charm; b not directly simulated on full-size lattice
- Are such simulations feasible? Compare computer power to estimated computational cost

Computer power

LQCD

- 1-10 Tflop/s today
- 1-10 Pflop/s 2015

Varieties of fermions

Wilson

Staggered
Ginsparg-Wilson

Varieties of fermions

Wilson

- standard
- O(a)-improved
- twisted mass

Varieties of fermions

Wilson

- standard
- O(a)-improved
- twisted mass

Staggered

- first to reach light masses:
$m_{l} / m_{s} \sim 1 / 8$
- "ugly" (Sharpe, hep-lat/0610094)

Varieties of fermions

Wilson

- standard
- O(a)-improved
- twisted mass

Staggered

- first to reach light masses:

$$
m_{l} / m_{s} \sim 1 / 8
$$

- "ugly" (Sharpe, hep-lat/0610094)
- Staggered $\Rightarrow 4$ tastes per flavour
- Reduced to one by 4th root of quark determinant
- Rooted staggered fermions unphysical for $a \neq 0$, but go over to single-taste theory in limit $a \rightarrow 0$.
- rSXPT: complicated fits with unphysical effects included in fit

Varieties of fermions

Wilson

- standard
- O(a)-improved
- twisted mass

Staggered

- first to reach light masses: $m_{l} / m_{s} \sim 1 / 8$
- "ugly" (Sharpe, hep-lat/0610094)

Ginsparg-Wilson

- domain wall
- overlap
- good chiral properties
- 10-30 price hike

Algorithmic progress

Tremendous progress in C21.

- RHMC (Clark-Kennedy, NPBPS129 850, PRL98 051601)
- Mass preconditioning (Hasenbusch, PLB519 177; Urbach et al, CPC174 87)
- Domain-decomposition (Del Debbio et al, JHEPO2 056)

Algorithmic progress

Compare 100 configurations of $N_{f}=2, O(a)$-improved Wilson fermions:

- 2001 (Ukawa, Lattice2001)

$$
5\left[\frac{0.2}{m_{l} / m_{s}}\right]^{3}\left[\frac{L}{3 \mathrm{fm}}\right]^{5}\left[\frac{0.1 \mathrm{fm}}{a}\right]^{7} \text { TflopsYr }
$$

- 2006 (Del Debbio et al, JHEP02 056): DD-HMC

$$
0.05\left[\frac{0.2}{m_{l} / m_{s}}\right]\left[\frac{L}{3 \mathrm{fm}}\right]^{5}\left[\frac{0.1 \mathrm{fm}}{a}\right]^{6} \text { TflopsYr }
$$

100 conf

$L=2.5 \mathrm{fm}$
$a=0.08 \mathrm{fm}$
$V=32^{3} \times 64$

Cost estimates: Wilson fermions

	Light quarks	Charm quarks
$N_{\text {conf }}$	120	120
a	$1 / 20 \mathrm{fm}$	$1 / 30 \mathrm{fm}$
a^{-1}	$\approx 4 \mathrm{GeV}$	$\approx 6 \mathrm{GeV}$
m_{l} / m_{s}	$1 / 12$	$1 / 12$
m_{π}	200 MeV	200 MeV
L	4.5 fm	4.5 fm
Vol	$90^{3} \times 180$	$140^{3} \times 280$
Wilson	0.07 Pflops yr	0.9 Pflops yr

- Overhead for $N_{f}=2+1$ and generating extra ensembles at larger a and larger m_{l} is a factor of about 3
- Bigger overhead for GW simulations (with good chiral symmetry)

Cost estimate: DWF fermions

DWF scaling formula (Christ and Jung, Lattice 2007)
Cost $\propto\left[\frac{L}{\mathrm{fm}}\right]^{5}\left[\frac{\mathrm{MeV}}{m_{\pi}}\right]\left[\frac{\mathrm{fm}}{a}\right]^{6}$

$$
\times\left\{C_{0}+C_{1}\left[\frac{\mathrm{MeV}}{m_{K}}\right]^{2}\left[\frac{\mathrm{fm}}{a}\right]+C_{2}\left[\frac{\mathrm{MeV}}{m_{\pi}}\right]^{2}\left[\frac{a}{\mathrm{fm}}\right]^{2}\right\}
$$

- About 1.5 Pflops yr for the light quark target simulation
- May not need such small $a(0.05 \mathrm{fm})$ for DWF
- Physics projects may demand larger volumes?
($L>4.5 \mathrm{fm}$)
- RBC-UKQCD able to do this around 2011?

Introduction

Required parameters

Target simulations
b physics

Conclusions

b physics on the lattice

Simulating a relativistic b-quark with 1% errors needs $a \sim 0.01 \mathrm{fm}$

- Cost scales as a^{-6} or a^{-7}
- Prohibitive even for Pflops computers if you want a big ($L \approx 4.5 \mathrm{fm}$) lattice as well

Charm physics is feasible with Wilson fermions

- For $a=0.033 \mathrm{fm}$, cost for 120 configurations ~ 0.9 Pflops yr

Lattice b-physics: complementary approaches

- Simulate relativistic quarks in charm region and extrapolate to b
- Effective theories
- HQET: substantial progress in nonperturbative renormalisation, use of static-link fattening and inclusion of $O\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ corrections
- NRQCD or Fermilab/Tsukuba (RHQ) actions
- Finite-volume and step-scaling approach of Rome-II group

$$
\mathcal{O}\left(L_{\infty}\right)=\mathcal{O}\left(L_{0}\right) \frac{\mathcal{O}\left(L_{1}\right)}{\mathcal{O}\left(L_{0}\right)} \cdots \frac{\mathcal{O}\left(L_{N}\right)}{\mathcal{O}\left(L_{N-1}\right)}
$$

L_{0} small enough to allow $a \approx 0.01 \mathrm{fm}$ and $L_{N} \sim L_{\infty}$ (last factor is 1 to required precision)

- Step-scaling also used for nonperturbative renormalisation of HQET (ALPHA) and RHQ (Christ \& Lin, prd76 074505/6)

Current status: interpolation

- ALPHA have implemented interpolation between static results and relativistic charm-scale results
- ALPHA and Rome-II have combined static and step-scaling results
- Both reach 3% precision for $f_{B_{s}}$
- ... but still in quenched approximation and consider $f_{B_{s}}$ so no chiral extrapolation

Interpolation: static and relativistic

- $a \rightarrow 0$ before $1 / m_{\text {PS }}$ interpolation
- still quenched

Della Morte et al, arXiv:0710.2201

$$
f_{B_{s}}=193(6) \mathrm{MeV}
$$

- no chiral extrapolation

Interpolation: static and relativistic/step-scaling

Della Morte et al, arXiv:0710.2201
Guazzini et al, arXiv:0710.2229
$f_{B_{s}}=193(6) \mathrm{MeV}$
$f_{B_{s}}=191(6) \mathrm{MeV}$

- $a \rightarrow 0$ before $1 / m_{\text {PS }}$ interpolation
- still quenched
- no chiral extrapolation

Heavy-to-heavy semileptonic decay: $B \rightarrow D / v$

- Rome-II step-scaling method plus twisted BCs
- Lattice data normalized to experiment at $\omega=1.2$
- 2% error on $G(\omega=1)$... quenched

Heavy-to-heavy semileptonic decay: $B \rightarrow D^{*} l v$

Extract $h_{A_{1}}$ directly from double ratio:

$$
\left|h_{A_{1}}(1)\right|^{2}=\frac{\left\langle D^{*}\right| \bar{c} \gamma_{j} \gamma_{5} b|\bar{B}\rangle\langle\bar{B}| \bar{b} \gamma_{j} \gamma_{5} c\left|D^{*}\right\rangle}{\left\langle D^{*}\right| \bar{c} \gamma_{4} c\left|D^{*}\right\rangle\langle\bar{B}| \bar{b} \gamma_{4} b|\bar{B}\rangle}
$$

Plot: $h_{A_{1}}(1)$ vs m_{π}^{2}

- $2+1$ improved staggered \Rightarrow rS χ PT fit
- Fermilab heavy quarks
- Quote 2.3\% error

Laiho, arXiv:0710.1111

Current status: $B \rightarrow \pi$ semileptonic decays

- Results from Fermilab and HPQCD using different effective theories
- Fermilab: Fermilab action (not final ...)
- HPQCD: NRQCD (prd73 074502, prd75 119906(E))
- Results have come into agreement
- ... but, based on same gauge field ensembles
- HPQCD: biggest errors from chiral extrapolation and perturbative matching
- $\sim 14 \%$ error on form factors in $q^{2} \geq 16 \mathrm{GeV}^{2}$
- Need confirmation from other approaches

JMF \& Nieves, prd76 031302

b-physics prognosis

- Best results likely from combining extrapolation from $m_{Q} \approx m_{c}$ with effective theory results (including $\Lambda_{\mathrm{QCD}} / m_{b}$ corrections)
- Few \% precision requires nonperturbative renormalisation: this is being done for HQET
- Medium term: look for agreement between different approaches (HQET, NRQCD, Fermilab/Tsukuba) and study theoretical foundations
- Although quenched approximation has been banished from light quark physics, some heavy quark analysis still being developed using quenched ensembles: redo unquenched once methods established

Introduction

Required parameters

Target simulations
b physics

Conclusions

Conclusions

- Access to Pflops computers with current techniques and knowledge should allow few \% precision in b-physics
- Further theoretical and technical advances will likely improve precision further
- Need all hadrons strongly stable (so not $B \rightarrow \rho$ decays for now)
- For b-hadron decays to two-hadron (or higher) states we need new ideas before we can formulate a numerical approach to evaluating the amplitudes

