BNM2008@ATAMI JAPAN JAN/2008 1

Search for η_b(nS) at CLEO

Hajime Muramatsu

University of Rochester For the CLEO Collaboration

Experimental Status on $\eta_b(1S)$ - I

 PDG lists (omitted from summary table) M(η_b(1S)) = 9300±20±20MeV (ALEPH coll. see below). Most of the potential models predict M(η_b(1S)) ~ 9.40^{+0.03}-0.05 GeV summarized in S. Godfrey and J. L. Rosner

PRD64,074011(2001).

- ALEPH collaboration (PLB530, 56 (2002))
 - Looked for 4 and 6 charged tracks (π and K) in 2-photon fusion processes.
 - Saw no events in 4-tk mode
 Saw one event (over expected bkg of 0.74±0.34) in 6-tk mode.
 It looked like K₈K⁻π⁺π⁻π⁺.
 - Provided ULs @ 95% C.L. on $\Gamma_{\gamma\gamma}(\eta_b) \times B(\eta_b(1S) \rightarrow 4 \text{ tracks}) < 48 \text{eV}$ $\Gamma_{\gamma\gamma}(\eta_b) \times B(\eta_b(1S) \rightarrow 6 \text{ tracks}) < 132 \text{eV}$

Experimental Status on $\eta_b(1S)$ - II

- DELPHI collaboration (PLB634, 340 (2006))
 - Similarly, looked for 4, 6, and 8 charged tracks (π and K) in 2-photon fusion processes.
 - Saw 0 events (1.2 bkg expected) in 4-tk mode
 Saw 2 events (1.1 bkg expected) in 6-tk mode
 Saw 1 event (1.5 bkg expected) in 8-tk mode
 in the range of 9.2GeV < M_{tk} < 9.6GeV.
 - Provided ULs @ 95% C.L. on $\Gamma_{\gamma\gamma}(\eta_b) \times B(\eta_b(1S) \rightarrow 4 \text{ tracks}) < 190\text{eV}$ $\Gamma_{\gamma\gamma}(\eta_b) \times B(\eta_b(1S) \rightarrow 4 \text{ tracks}) < 470\text{eV}$ $\Gamma_{\gamma\gamma}(\eta_b) \times B(\eta_b(1S) \rightarrow 4 \text{ tracks}) < 660\text{eV}$

CLEO-III detector

- Located at Cornell Electron Storage Ring
- e^+e^- collisions at $\sqrt{s} \sim 10 \text{GeV} (2001 \sim 2002)$

EM calorimeter – Essential for photon spectroscopy

- ~8000 CsI(Tl) crystals + photo-diodes
- First crystal calorimeter in magnetic field (1.5T)
- 2.2 (5)% at $E_{\gamma}=1(0.1)GeV$

Excellent charged particle detection

Excellent particle identification

- dE/dx
- Ring Imaging Cherenkov (RICH)

Data

Reconstructed η_c exclusively based on 15% of η_c decays according to PDG2007

- We have $\sim 6M \Upsilon(3S)$ sample.
- 3.44 3.46 3.48 3.50 3.52 3.54 3.56 $B(\Upsilon(3S) \rightarrow \pi^0 h_b) \cdot B(h_b \rightarrow \eta_b \gamma) \sim 4 \times 10^{-4}$ h_candidate mass (GeV/c²) predicted by M.B. Voloshin, Sov.J.Nucl.Phys.43, 1011 (1986) and S.Godfrey and J.L.Rosner, PRD66,014012 (2002))
- Not enough phase space between $M(\Upsilon(2S))$ and $M(h_b)$ assuming $M(h_b)$ ۲ = 9.9GeV (predicted to be ~9900±4MeV, see the above summary of **Godfrey and Rosner).** Can we detect 7% of $\eta_{\rm b}$ decays ?

$\Upsilon(3S) \rightarrow (\pi^0 \text{ or } \pi^+\pi^-) h_b(1P), h_b(1P) \rightarrow \eta_b(1S) \gamma$

- Between M(Y(3S)) and M(h_b), there IS enough phase space to produce two π and we don't have to violate isospin conservation!.
- Predictions vary: $B(\Upsilon(3S) \rightarrow \pi^+\pi^- h_b) \cdot B(h_b \rightarrow \eta_b \gamma) \sim \langle 4 \times 10^{-4} \sim 8 \times 10^{-3}$ (i.e. see S.Godfrey and J.L.Rosner, PRD66,014012 (2002))
- Also the transition photon is detectable. $E_{\gamma} \sim 500 \text{MeV}$ from $h_c \rightarrow \gamma_c \gamma$ likewise $E_{\gamma} \sim 490 \text{MeV}$ from $h_b \rightarrow \gamma_b \gamma$ assuming $M(h_b)=9.9 \text{GeV}$ and $M(\gamma_b)=9.4 \text{GeV}$.

This is all good news. BUT

- $\Upsilon(3S) \rightarrow (\pi^0 \text{ or } \pi^+\pi^-) h_b(1P), h_b(1P) \rightarrow \eta_b(1S) \gamma$
- Higher particle average multiplicities (neutrals) in Y data makes much more difficult to isolate a photon (and larger relative production of continuum).
- $E_{\gamma} = 483 \text{MeV from } \Upsilon(3S) \rightarrow \gamma \chi_b(1P_0) \text{ might make things worse}$

$$l(nS) \rightarrow \eta_b(mS) \gamma_b$$

- RECALL: $\Gamma_{M1} \propto k^3/m^2_Q \cdot |\langle f|j_0(kr/2)|i\rangle|^2$
 - Allowed M1 $(n^3S_1 \rightarrow n^1S_0)$
 - $|\langle \mathbf{f} | j_0(kr/2) | \mathbf{i} \rangle| \sim 1$
 - k is small (~60MeV for $1S \rightarrow 1S$)
 - Fobidden M1 ($n^3S_1 \rightarrow m^1S_0$)
 - $|\langle \mathbf{f} | j_0(kr/2) | \mathbf{i} \rangle| \sim 0$
 - k is large (~600/900MeV for $2/3S \rightarrow 1S$)
 - Could the larger k³ factor compensate the smaller $|\langle f|j_0(kr/2)|i\rangle|^2$ in cases of 3S \rightarrow 1S and 2S \rightarrow 1S?
- CLEO has looked for Y(nS) → η_b(mS) γ inclusively.
 No signals were seen, set Uls @ 90% C.L. (PRL94,032001(2005))
 - $\Rightarrow B(\Upsilon(2S) \Rightarrow \eta_{b}(1S) \gamma) < 5.1 \times 10^{-4}$ $B(\Upsilon(3S) \Rightarrow \eta_{b}(1S) \gamma) < 4.3 \times 10^{-4}$ $B(\Upsilon(3S) \Rightarrow \eta_{b}(2S) \gamma) < 6.2 \times 10^{-4}$
- Predictions vary: B(Y(2,3S) → η_b(1S) γ) ~10⁻⁶~10⁻³
 See S. Godfrey and J. L. Rosner PRD64,074011(2001).

$\Upsilon(nS) \rightarrow \eta_b(mS) \gamma$

- Sensitivity to inclusive $\Upsilon(1S) \rightarrow \eta_b(1S) \gamma$ limited due to the large background in $E_{\gamma} < 100 \text{MeV}$ region.
- At CLEO, we are currently investigating BOTH allowed and forbidden M1 transistions exclusively.

Which η_b decay modes should we exclusively look for?

$\Upsilon(nS) \rightarrow \eta_b(mS) \gamma$

- The η_c -like modes found in PDG? There are SOME more η_c -like modes NOT found in PDG (see the next slide).
- $M(\eta_b) > \sim 3 \times M(\eta_c)$ ==> η_b should have higher average multiplicities.
- We also see significant χ_{cJ} peaks produced via $\psi(2S) \rightarrow \chi_c(1P_J) \gamma$ for these exclusive modes.

How about $\chi_b(1,2P_J)$ -like modes?

$\Upsilon(nS) \rightarrow \eta_b(mS) \gamma$ Currently trying to conduct the following 3 tests

- Test 1:
 - We know $B(\Upsilon(2S) \rightarrow \gamma \eta_b(1S)) < 0.00051 \ (0.00043 \ for \ \Upsilon(3S) \ decays).$
 - Assuming $B(\Upsilon(2S) \rightarrow \gamma \chi_{bJ}) = 6\%$ for each J (3.8, 6.9, 7.15% for J=0,1,2)
 - and assuming efficiencies and branching ratios of events from

 $\Upsilon(2S) \rightarrow \gamma \chi_{bJ}, \chi_{bJ} \rightarrow X$

are the same as the ones from

 $\Upsilon(2S) \rightarrow \gamma \, \eta_b, \eta_b \rightarrow X$

for the same exclusive modes, X, then we should see one η_b event while seeing ~100 χ_{bJ} events (for each J).

Can we see *significant* $\chi_b(nP_J)$ signals exclusively? (which, itself, is interesting...) Then, choose modes based on $\chi_b(1,2P_J)$ signals.

$\Upsilon(nS) \rightarrow \eta_b(mS) \gamma$

- Test 2:
 - We have measured a hindered E1 transition; $B(\Upsilon(3S) \rightarrow \chi_b(1P_0) \gamma) = (3.0 \pm 0.4 \pm 1.0) \times 10^{-3}$ (PRL94,032001(2005)).
 - What we are looking for is ~10⁻⁴ at most.
 - Better be able to see the transition
 Y(3S) → χ_b(1P_J) γ, χ_b(1P_J) → exclusives.
 (which, itself, is interesting ... Recall the overlapped photon peaks shown earlier).

$\Upsilon(nS) \rightarrow \eta_b(mS) \gamma$

- Test 3: Consistency check ("IF" we pass Test 1 and 2)
 - Do we see an enhancement around invariant mass of 9400±50MeV?
 - Do we see similar enhancements in all of the Y(1,2,3S) data with the same mass (in Y(1S), there could be an additional experimental challenge to detect ~60MeV-photon)?
 - Do we see a similar enhancement with the same mass with the following chains:
 - $\Upsilon(3S) \rightarrow \pi^0 h_b, h_b \rightarrow \eta_b \gamma, \eta_b \rightarrow \text{exclusives}$
 - $\Upsilon(3S) \rightarrow \pi^+\pi^- h_b, h_b \rightarrow \eta_b \gamma, \eta_b \rightarrow \text{exclusives}$
 - $\Upsilon(3S) \rightarrow \chi_b(2P_0) \gamma, \chi_b(2P_0) \rightarrow \eta_b \eta, \eta_b \rightarrow \text{exclusives}$ M.B.Voloshin M.P.L.A19,2895 (2004) predicts $B(\chi_b(2P_0) \rightarrow \eta_b \eta) \sim 10^{-3}.$

Summary/Comments

- Currently, we are working on:
 - $\Upsilon(nS) \rightarrow X \gamma, X \rightarrow \text{exclusives, (n=1,2, and 3)}$ where X= $\eta_b(mS), \chi_b(mP)$
 - $-\Upsilon(3S) \rightarrow \pi^0/\pi\pi h_b, h_b \rightarrow \eta_b\gamma$
- Potential excitements in the near future
 - BaBar plans to have ~30/fb data taken at Y(3S) by March. Is the boosted frame an issue?
 - Belle already has 11M Y(3S) decays.
 - If Super B factory could devote a few days (~1/ab???) to run on lower resonances, such data should allow us to do precision study on η_b properties.