

D^0 mixing prospects at super B factory

Marko Starič J. Stefan Institute, Ljubljana, Slovenia

> **24-26 January 2008** BNM 2008, Atami, japan

- Introduction
- Prospects for super B
- Conclusions

Mixing

• Flavor eigenstates \neq mass eigenstates (with $m_{1,2}$, $\Gamma_{1,2}$)

$$|D_{1,2}
angle = p|D^0
angle \pm q|\overline{D}^0
angle$$

◆ $p/q \neq 1 \Rightarrow CP$ violation

• D^0 at t = 0 evolves as:

$$|D^{0}(t)\rangle = e^{-(\Gamma/2 + im)t} \left[\cosh(\frac{y + ix}{2}\Gamma t)|D^{0}\rangle + \frac{q}{p}\sinh(\frac{y + ix}{2}\Gamma t)|\overline{D}^{0}\rangle\right]$$

with

$$x = \frac{m_2 - m_1}{\Gamma} \qquad \qquad y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$$

 $\bullet ||x|, |y| \ll 1:$

$$\frac{dN_{D^0 \to f}}{dt} \propto |\langle f|\mathcal{H}|D^0(t)\rangle|^2 = e^{-\Gamma t} \left|\langle f|\mathcal{H}|D^0\rangle + \frac{q}{p} (\frac{y+ix}{2}\Gamma t)\langle f|\mathcal{H}|\overline{D}^0\rangle\right|^2$$

Decay time distribution of different final states sensitive to different combinations of mixing parameters x and y.

Current status

HFAG averages

 $D^0 \to K^{(*)+} e^- \overline{\nu}_e$

✦ Belle, PRD72, 071101 (2005), 253 fb⁻¹:

 $R_M = (2.0 \pm 4.7 \pm 1.4) \times 10^{-4}$

- non-scaling systematics: 0.7 × 10⁻⁴
 ▷ mainly Br's of some bkg. processes
 ▷ equal to stat. error at 11 ab⁻¹
- extrapolated to 5 ab⁻¹: $\sigma(R_M) \approx \pm 1.3 \times 10^{-4}$
- ♦ including μ decay channel (~ 2× larger statistics):

 $\sigma(R_M) \approx 0.9 \times 10^{-4}$

for comparison:

 \triangleright current HFAG average: $x \sim y \sim 1\% \Rightarrow R_M \sim 10^{-4}$

- ◆ BaBar, PRD76, 014018 (2007), 344 fb⁻¹:
 - b using double-tag method
 - ▷ observe 4780 RS events / 3 WS events (expected WS bkg.: 2.85)
- extrapolating to 5 ab^{-1} and assuming $R_M = 10^{-4}$:
 - ▷ 70000 RS events → 7 WS signal events / 40 WS bkg. events ▷ e.g.: $N_{WS} \approx 7 \pm \sqrt{7 + 40} = 7 \pm 7$
- igstarrow expect to obtain $\sim 1\sigma$ sensitivity, similar to single-tag method

 $x' = x \cos \delta + y \sin \delta$ $y' = y \cos \delta - x \sin \delta$

 $A_M = \frac{|q/p|^2 - |p/q|^2}{|q/p|^2 + |p/q|^2}$

 $|q/p| = 1 + \frac{1}{2}A_M$

 $A_M \ll 1$:

 $D^{0} \rightarrow K^{+}\pi^{-}$ • Belle, PRL96, 151801 (2006), 400 fb⁻¹: $x'^{2} = (1.8 \pm 2.2 \pm 1.1) \times 10^{-4}$ $y' = (0.06 \pm 0.40 \pm 0.20)\%$ $A_{M} = 0.67 \pm 1.2$ $|\phi| = 0.16 \pm 0.44$

- non-scaling systematics: none
- extrapolated to 5 ab^{-1} :

$$\sigma(x'^2) = 0.7 \times 10^{-4}$$

 $\sigma(y') = 0.13\%$
 $\sigma(A_M) = 0.34$
 $\sigma(\phi) = 0.14$

Other final states ____

Decays to CP-odd eigenstates (measures y_{CP} with opposite sign) $D^0 \rightarrow K^0_s \omega; \omega \rightarrow \pi^+ \pi^- \pi^0 \quad Br = 0.68\%$ $D^0 \to K^0_s \phi; \phi \to K^+ K^-$ Br = 0.15%(for comparison: $Br(K^+K^-) = 0.38\%$) Other decays to charge-conjugate final states (measures x and y) $D^0 \to \pi^+ \pi^- \pi^0 \qquad Br = 1.3\%$ $D^0 \to K^0_s K^+ K^- \quad Br = 0.3\%$ (for comparison: $Br(K_s^0\pi^+\pi^-) = 1.9\%$) Results not reported yet Signal yields expected to be smaller (Br, K_s^0 , π^0 efficiency) probably less sensitive measurements

Summary table _____

::

decay	R_M $(\times 10^{-4})$		y (%)	$\frac{x'^2/x''}{(\times 10^{-4}/\%)}$	y'/y'' (%)	q/p	ϕ (rad)
$K^{(*)+l-1}$		(70)	(70)	(//10 //0)	(70)		(rad)
$K^+\pi^-$ $K^+\pi^-\pi^0$	0.5	(0.35)* (0.23)†	(0.13)* (0.31)†	0.7 0.23	0.13 0.31	0.17	0.14
$K^{+}K^{-}/\pi^{+}\pi^{-}$		(0.20)	0.15	0.20	0.01	0.09	
$K_s \pi^+ \pi^-$		0.17	0.12			0.13	0.12
combined		0.13	0.07			0.07	0.09
* assuming $\delta=0$ and $x=1\%$ † assuming $\delta_2=0$							
HFAG(2007)	3.9	0.28	0.19			0.17	0.15
Super $B(5ab^{-1})$	0.9	0.13	0.07			0.07	0.09
gain	4.3	2.2	2.6			2.4	1.7

Conclusions

::-

- ◆ Super B factory with 5 ab⁻¹ could measure D⁰ mixing parameters x and y with precisions of 0.13% and 0.07%.
 ▷ corresponds roughly to 10σ (assuming x ~ y ~ 1%).
 - CPV parameters |q/p| and ϕ could be constrained to 0.07 and 0.09
 - \triangleright gain a factor of ~ 2 with respect to current W.A.
 - ▷ still not enough to reach SM predictions (<0.01)
 - > any sign of CPV in this region would mean NP!
- The measurements except Dalitz t-dependent are not limited by systematics (improvements in the Dalitz model can be expected as well)