$b \to s \nu \bar{\nu}$ decay in the MSSM at large $\tan \beta$

Youichi Yamada (Tohoku Univ.)

Ref. YY, arXiv:0709.1022 (PRD in press)

BNM 2008, Atami, Jan. 25, 2008

• $b \to s \nu \bar{\nu}$ decay

- MSSM contributions at large $\tan \beta$
 - an eta -enhanced contributions from gluino and H^\pm
- correlation to $b \to s \gamma$
 - gluino loops, chargino loops, H^{\pm} loops
- $B_s \to \mu^+ \mu^-$ for H^{\pm} loops

FCNC processes are very important to probe the physics beyond the SM

- * No tree-level SM contributions
- ⇒ sensitive to new physics contributions

FCNC in B physics

$$B_{d,s}$$
- $\bar{B}_{d,s}$ mixings, $b \to s\gamma$, $b \to sl^+l^-$, $B_{s,d} \to \mu^+\mu^-$, ...

Here we consider the decay $b \to s\nu\bar{\nu}$ in the MSSM, at large $\tan\beta = \langle H_U \rangle/\langle H_D \rangle \gg 1$ and for general flavor mixing of squarks.

$$b o s
u ar{
u} \; (ar{B} o X_s
u ar{
u}) \; \mathsf{decay} \; (\, {\scriptscriptstyle B^-} \! \to {\scriptscriptstyle K^{(*)-}} \nu ar{
u}, \, \dots)$$

Generated by Z-penguin and box diagrams.

SM contributions
$$\sim (\bar{s}_L \gamma^{\mu} b_L)(\bar{\nu}_L \gamma_{\mu} \nu_L)$$

- Dominance of short distance contrib. by hard GIM cancellation
- Inclusive branching ratio $Br(\bar{B} \to X_s \nu \bar{\nu})$: small uncertainty from hadronic/nonpertubative corr.
 - ⇒ theoretically clean prediction "Golden mode"

Experimental search for $b \to s \nu \bar{\nu}$

Search for $B \to (K, K^*, \cdots)$ + (missing energy): not observed yet

Upper limits:

$${\rm Br}(\bar{B} \to X_s + E_{miss}) < 6.4 \times 10^{-4} \ ({\rm ALEPH, \ 2001})$$
 ${\rm Br}(B^- \to K^- + E_{miss}) < 1.4 \times 10^{-5} \ ({\rm Belle, \ 2007}) \ {\rm etc.}$

Still much larger than the SM predictions (sum over $\nu = \nu_{e,\mu,\tau}$) $\text{Br}(\bar{B} \to X_s \nu \bar{\nu})_{SM} = (3.7 \pm 0.2) \times 10^{-5}$ (Bobeth et al, 2005) $\text{Br}(\bar{B} \to K \nu \bar{\nu})_{SM} = (3.8^{+1.2}_{-0.6}) \times 10^{-6}$ (Buchalla et al, 2001) $\text{Br}(\bar{B} \to K^* \nu \bar{\nu})_{SM} = (1.3^{+0.4}_{-0.3}) \times 10^{-5}$ (Buchalla et al, 2001)

A target at Super B factory

expect 20% precision for ${\rm Br}(B^- \to K^- \nu \bar{\nu})$ at 50–100 ab $^{-1}$

MSSM(minimal supersymmetric standard model) a very promising extension of the standard model

* All particles in SM have the "superpartners" (SUSY particles), which have the same gauge charges and different spins by 1/2.

```
\begin{array}{lll} q_{\alpha} & \rightarrow & \text{squarks } \tilde{q}_{L\alpha}, \tilde{q}_{R\alpha}(\alpha=1-6) \\ l & \rightarrow & \text{sleptons } \tilde{l} \\ g & \rightarrow & \text{gluino } \tilde{g} \\ W^{\pm}, H^{\pm} & \rightarrow & \text{charginos } \tilde{\chi}^{\pm}_{1,2} \\ \gamma, Z, H^{0}_{1-3} & \rightarrow & \text{neutralinos } \tilde{\chi}^{0}_{1-4} \end{array}
```

Flavor mixing of squarks: not governed by CKM matrix New sources of FCNC processes * Having two Higgs doublets

$$H_D = (H_D^0, H_D^-), \quad H_U = (H_U^+, H_U^0),$$

$$\langle H_D^0 \rangle^2 + \langle H_U^0 \rangle^2 = 2m_W^2/g_2^2, \quad \langle H_U^0 \rangle / \langle H_D^0 \rangle \equiv \tan \beta$$

$$\langle H_D \rangle \to m_d, m_l \qquad \langle H_U \rangle \to m_u \qquad \text{(at tree level)}$$

For large $\tan \beta \gg 1$, Yukawa couplings of b/\tilde{b} become large. Interesting in phenomenology

$$Y_b \sim \frac{m_b}{\langle H_D \rangle} \sim \frac{1}{\cos \beta} Y_b(\text{SM})$$

SUSY/Higgs contributions to $b \to s \nu \bar{\nu}$

Bertolini et al; Grossman et al; Goto et al; Buchalla et al; . . .

(1) Z^0 penguin diagrams by 1-loop $Z\bar{s}b$ vertex (quark-Higgs, squark-ino)

main parts of SUSY/Higgs contributions

Need $3 \rightarrow 2$ flavor changing and SU(2) breaking in the loops

(2) Box diagrams usually small for SUSY loops

Effective Hamiltonian for $b \to s \nu \bar{\nu}$

$$H_{\text{eff}} = -\frac{2G_F \alpha}{\sqrt{2} \pi} K_{ts}^* K_{tb} [C_\nu \mathcal{O}_L + C_\nu' \mathcal{O}_R],$$

$$\mathcal{O}_L = (\bar{s}_L \gamma^\mu b_L)(\bar{\nu}_L \gamma_\mu \nu_L), \quad \mathcal{O}_R = (\bar{s}_R \gamma^\mu b_R)(\bar{\nu}_L \gamma_\mu \nu_L)$$

Simple structure

$$C_{\nu} = C_{\nu}(SM) + C_{\nu}(new), C_{\nu} = C'_{\nu}(new) \quad (C_{\nu}(SM) \simeq -6.8)$$

Branching ratios

$$\sum_{\nu} \text{Br}(B \to X_s \nu \bar{\nu}) \propto |C_{\nu}|^2 + |C'_{\nu}|^2,$$

$$\sum_{\nu} \text{Br}(B \to K \nu \bar{\nu}) \propto |C_{\nu} - C'_{\nu}|^2$$

SUSY/Higgs contributions in MSSM

* Chargino-squark loops $(Z\bar{s}b \text{ vertex} \oplus box)$

SU(2) breaking by A-term mixings $\tilde{t}_R - \tilde{t}_L$, $\tilde{t}_R - \tilde{c}_L$: Dominant MSSM contrib. at small/moderate $\tan \beta$ (main target in previous studies)

* Gluino-squark loops $(Z\bar{s}b \text{ vertex})$

SU(2) breaking by $\tilde{q}_L - \tilde{q}_R$ mixing for $\tilde{q} = (\tilde{b}, \tilde{s}) \propto m_b \mu \tan \beta$ enhanced by $\tan \beta \gg 1$ and $\tilde{b} - \tilde{s}$ flavor mixing

* (H^{\pm}, t) loops $(Z\bar{s}b \text{ vertex})$

 ΔC_{ν} $(b_L \rightarrow s_L)$: suppressed by $1/\tan^2 \beta$

 $\Delta C_{\nu}'$ $(b_R \to s_R)$: induced by $\tan \beta$ -enhanced one-loop effective $\bar{s}_R t_L H^-$ coupling $\sim (\hat{Y}_d)_{23}$, which can be much larger than tree-level $\sim m_s \tan \beta$ (see later)

 $C_{
u}'(H^+)$ may be relevant at $aneta\gg 1$ and with $ilde{s}_R- ilde{b}_R$ mixing

Cf. Similar $\tan \beta$ -enhanced H^{\pm} contribution to $K \to \pi \nu \bar{\nu}$: Isidori, Paradisi,

$\tan \beta$ -enhanced one-loop quark flavor violation

Hempfling; Hall et al.; Carena et al.; Blazek et al.; Babu, Kolda; Foster et al.; ...

Effective interactions of $d_{iR} = (d, s, b)_R$ to two Higgs doublets, after squarks are integrated out

$$\mathcal{L}_{\rm int} = -(\hat{Y}_d)_{ij}\bar{d}_{iR}q_{jL}H_D - (\Delta Y_d)_{ij}\bar{d}_{iR}q_{jL}H_U^c$$
 $H_U \sim h^0({\sf SM-like}), \ H_D \sim (H^0,A^0,H^\pm) \ {\sf at} \ {\sf tan} \ \beta \gg 1$

 $\Delta Y_d = 0$ at tree-level by SUSY, but are induced by squark loops with soft SUSY breaking.

* quark mass matrix: set to flavor-diagonal

$$m_d(\mathsf{SM})_{ij} \propto [\hat{Y}_d v_d + \Delta Y_d v_u]_{ij} \propto [\hat{Y}_d + \mathsf{tan}\,eta \Delta Y_d]_{ij}$$

* $(H^0,A^0,H^\pm,\tilde{H}_D)$ -couplings to d_{Ri} : determined by \hat{Y}_d Not diagonal in quark mass basis

 $\tan \beta$ -enhanced effective flavor-changing higgs-(s)quark couplings, not governed by CKM matrix, are generated. Numerically important at large $\tan \beta$

Constraints on $b \to s \nu \bar{\nu}$ from $b \to s \gamma$

 $b \to s\gamma$:

enhanced by the SU(2)×U(1) breakings and 3 \rightarrow 2 flavor changing in the loops (similar to $b \rightarrow s \nu \bar{\nu}$)

 \Rightarrow experimental bound on $b\to s\gamma$ should give constraints on the SUSY/Higgs contributions to $b\to s\nu\bar{\nu}$.

especially important at large $\tan \beta$

Very rough estimation of the constraints:

Requiring Wilson coeff. $(\Delta C_7, \Delta C_7')(\mu_W)$ for $b \to s\gamma$ from each SUSY/Higgs sector to be not larger than $C_7(\text{SM}, \mu_W) \sim -0.2$

Numerical correlation between $C_{\nu}^{(\prime)}$ and $C_{7}^{(\prime)}$

Scan over 2-3 flavor mixing parameters in squark mass matrices $(\delta_{LL}^q, \delta_{RR}^u, \delta_{RR}^d, (A_u)_{33,32})$

$$M_{\tilde{Q}XX}^{2} = M_{\tilde{Q}}^{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & (\delta_{XX}^{q})_{23} \\ 0 & (\delta_{XX}^{q})_{23} & 1 \end{pmatrix} + (m_{q}^{(0)})^{2} + D_{q}I,$$

$$(XX = (LL, RR), Q = (U, D)),$$

$$M_{\tilde{U}RL}^{2} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & m_{t}(A_{u})_{32} & m_{t}(A_{u})_{33} - \mu m_{t} \cot \beta \end{pmatrix},$$

$$M_{\tilde{D}RL}^{2} = -\mu m_{d}^{(0)} \tan \beta$$

 $m_d^{(0)} \propto \hat{Y}_d$: "bare" quark mass matrix, not necessarily diagonal.

(1) Gluino-squark contribution to (C_{ν}, C'_{ν})

Both scale with $\tilde{b}_R - \tilde{s}_L$ mixing $\propto m_b \mu \tan \beta$

Requiring $|\Delta C_7(\tilde{g})| < |C_7(\mathsf{SM}, \mu_W)| \sim 0.2$ constrains $\Delta C_{\nu}(\tilde{g})$ much smaller than $C_{\nu}(\mathsf{SM}) \sim -6.8$.

$\Delta C_{\nu} - \Delta C_{7}$ corr. (gluino-squark loops)

[tan $\beta=50$, $M_{\tilde{q}}=500$ GeV, $m_{\tilde{g}}=500$ GeV, $\mu=[-550,550]$ GeV, $(\delta^d_{LL,RR})_{23}=[-0.3,0.3]$]

Gluino contributions cannot be large, even at $\tan \beta \gg 1$ and with large $\tilde{b}-\tilde{s}$ mixing

(2) Chargino-squark contributions

main parts

 ΔC_{ν} increases with $(A_u)_{33}$ $(\tilde{t}_R - \tilde{t}_L)$ and $(A_u)_{32}$ $(\tilde{t}_R - \tilde{c}_L)$ mixings

 $\Delta C_7(\tilde{\chi}^{\pm})$ also increases with $(A_u)_{33,32}$ as well as with $\tan \beta$, but $\Delta C_{\nu} - \Delta C_7$ correlation is not so strong due to their different dependences on $((A_u)_{33}, (A_u)_{32})$

 $\Delta C_{\nu} - \Delta C_7$ corr. (chargino-squark loops)

[aneta=50, $M_{\tilde{q}}=500$ GeV, $M_2=300$ GeV, $\mu=500$ GeV, $m_{\tilde{l}^\pm}=400$ GeV, $(\delta^u_{LL})_{23}=[-0.3,0.3]$, $(\delta^u_{RR})_{23}=0$, $(A_u)_{33,32}=[-1500,1500]$ GeV]

 $\Delta C_{
u} \sim \pm 1$ possible while $|\Delta C_7^{(')}| < 0.2$ $\sim 30\%$ deviation from SM?

(3) H^{\pm} contributions for $\tan \beta \gg 1$

(by loop-generated effective $H^{-}\bar{s}_{R}t_{L}$ couplings)

Constraints from $\Delta C_7^{(\prime)}(H^+)$ are not so strong as $\Delta C_7^{(\prime)}(\tilde{g})$, since $\Delta C_7^{(\prime)}(H^+)$ are not tan β -enhanced.

 $\Delta C_{\nu}' - \Delta C_{7}^{(\prime)}$ corr. $(H^{\pm} - t \text{ loops})$ [tan $\beta = 50$, $M_{\tilde{q}} = 500$ GeV, $M_{3} = 500$ GeV, $\mu = -500$ GeV, $(A_{u}) = 0$, $\delta_{LL,RR}^{d} = [-0.3,0.3]$, $m_{H^{\pm}} = [400,1000]$ GeV]

 $\Delta C_{\nu}^{\prime} \sim \pm 1$ possible

$$B_s \to \mu^+ \mu^-$$
 constraint on $C'_{\nu}(H^{\pm})$

Effective $H^+\bar{s}_Rt_L$ coupling for $C'_{\nu}(H^\pm)$ is associated with $(H^0,A^0)\bar{s}_Rb_L$, by SU(2) symmetry.

Large "tree-level" contributions to $B_s \to \mu^+ \mu^-$ are induced by Higgs penguin.

Br
$$(B_s \to \mu^+ \mu^-) < 10^{-7}$$
 (Tevatron, 2007) (cf. 4×10^{-9} in SM) $\to |(\hat{Y}_d)_{32}|^2 + |(\hat{Y}_d)_{23}|^2 < 0.2 \cos^2 \beta (m_A/500 \text{ GeV})^4$

 \Rightarrow $C_{\nu}'(H^+)<$ 0.15×(corr. to $H^+\bar{t}_Lb_R$) for tan $\beta=$ 50, $m_A<$ 1 TeV

negligible compared to $C_{\nu}({\rm SM}) \sim -6.8$

Conclusions

- * In the MSSM at large $\tan\beta$ and with general flavor mixings for squarks, the $b\to s\nu\bar\nu$ decay may receive potentially sizable, O(10)% contributions from the gluino and H^\pm loops, in addition to the chargino contribution, through the Z penguin diagrams.
- * However, their magnitudes are strongly constrained by other FCNC processes of the b mesons, $b \to s\gamma$, $B_s \to \mu^+\mu^-$, . . .
- * Requiring $\Delta C_7(\text{SUSY}) < C_7(\text{SM})$ for $b \to s\gamma$ and [Higgs penguin] < [Experimental upper limit] for $B_s \to \mu^+\mu^-$ give strong suppression $\Delta C_{\nu}^{(\prime)}(\tilde{g},H^+) \ll C_{\nu}(\text{SM})$.

Things to do

* Estimation of SUSY contributions to $b \to s\nu\bar{\nu}$ with wider parameter scan and imposing other constraints $(B_s - \bar{B}_s \text{ mixing,} \Delta\rho, \text{ etc.})$:

now in progress

* Comparison with related FCNC processes:

$$b \to s l^+ l^-, K \to \pi \nu \bar{\nu}$$